Cu-Catalyzed N-Arylation of Imidazoles and Benzimidazoles
complished using aryllead triacetate,6 arylboronic acid,7 triaryl-
bismuth,8 hypervalent aryl siloxane,9 diaryl iodonium salt,10 and
arylstannane11 reagents, these methods generally require the use
of toxic and/or unstable reagents that can be difficult to prepare.
Furthermore, in many cases, only one of the multiple aryl groups
is transferred to the heterocycle. In contrast, the use of more
stable and readily available aryl halides as the electrophilic
coupling partner resolves these issues.
SCHEME 1. Possible Catalytic Cycle
In our previous report, 5 mol% bis-[copper (I) triflate]benzene
[(CuOTf)2‚PhH] was shown to facilitate the coupling of
imidazole with aryl iodides under moderate conditions (100%
1,10-phenanthroline, L1a/10% dba/Cs2CO3/xylenes/110-125
°C/24-48 h).12 However, the scope of the catalyst system was
limited to the coupling of unhindered imidazoles with unhin-
dered aryl iodides. The use of air-sensitive (CuOTf)2‚PhH as
the precatalyst required the use of inconvenient glove box
techniques for reaction setup. The need for stoichiometric
quantities of the 1,10-phenanthroline ligand and long reaction
times were also undesirable.
Subsequently, we have developed effective ligands and
catalyst systems for the Cu-catalyzed coupling of aryl iodides
and bromides with a variety of N-H containing azoles;
however, little progress was made with respect to the N-arylation
of imidazoles.13 While reports by other groups have disclosed
the use of salicylaldoxime derivatives,14a amino acid deriva-
tives,14b-c N,N′-dimethylethylenediamine derivatives (DMEDA),14d
ligands first reported for C-N couplings by us,13c-e 4,7-
dichloro-1,10-phenanthroline,14e 8-hydroxyquinoline,14f amino-
arenethiol,14g oxime-phosphine oxides,14h phosphoamidites,14i
1,10-phenanthroline,14j fluoroapetite,14k and 2-aminopyrimidine-
diols14l as supporting ligands in the Cu-catalyzed N-arylation
of imidazoles with aryl iodides, very few examples of the
coupling of imidazoles with aryl bromides or of even moderately
hindered substrates (e.g., a 2-substituted imidazole or a 2-sub-
stituted aryl halide) were disclosed until our recent paper.15
Furthermore, the use of heteroaryl halides and 4(5)-substituted
imidazoles has not been reported. Herein, we describe a full
account of our recent work, which significantly expands the
substrate scope for the coupling of imidazoles and benzimida-
zoles with aryl halides. We also present results of a study in
which we compare our results with other recently reported
catalyst systems.
(6) Alvarado, L. L.; Avedan˜o, C.; Mene´ndez. J. C. J. Org. Chem. 1995,
60, 5678.
(7) (a) Lam, P. Y.; Clark, C. G.; Sauber, S.; Adams, J.; Winters, M. P.;
Chan, D. M. T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941. (b) Collman,
J. P.; Zhong, M.; Zeng, L.; Costanzo, S. J. Org. Chem. 2001, 66, 1528. (c)
Lan, J. B.; Li, C.; Yu, X.; You, J. S.; Xie, R. G. Chem. Commun. 2004,
188.
(8) Fedorov, A. Y.; Finet, J. P. Tetrahedron Lett. 1999, 40, 2747.
(9) Lam, P. Y. S.; Deudon, S.; Averill, K. M.; Li, R.; He, M. Y.;
DeShong, P.; Clark, C. G. J. Am. Chem. Soc. 2000, 122, 7600.
(10) Kang, S. K.; Lee, S. H.; Lee, D. Synlett 2000, 1022.
(11) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Averill, K.
M.; Chan, D. M. T.; Combs, A. Synlett 2000, 674.
Results and Discussion
Method Development and Mechanistic Considerations.
Our initial investigations of the coupling of 2-iodotoluene with
imidazole demonstrated that 4,7-dimethoxy-1,10-phenanthroline
(L1c)16 in combination with (CuOTf)2‚PhH and Cs2CO3 in
CH3CN provided an improved catalyst system for this trans-
formation relative to those previously reported. As compared
to that derived from L1a, the enhanced reactivity of the catalyst
system based on Cu(I)-L1c can be attributed to the increased
σ-donating ability of the ligand, as evidenced by the difference
in acidities of the corresponding conjugate acids of the free
(12) Kiyomori, A.; Marcoux, J. F.; Buchwald, S. L. Tetrahedron Lett.
1999, 40, 2657.
(13) (a) Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett. 2002, 4,
581. (b) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2003, 5, 793. (c) Klapars,
A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421. (d)
Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc.
2001, 123, 7727. (e) Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am.
Chem. Soc. 2002, 124, 11684. (f) Klapars, A.; Parris, S.; Anderson, K. W.;
Buchwald, S. L. J. Am. Chem. Soc. 2004, 126, 3529. (g) Antilla, J. C.;
Baskin, J. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2004, 69,
5578. (h) Shafir, A.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 8742.
(14) (a) Cristau, H. J.; Cellier, P. P.; Spindler, J. F.; Taillefer, M. Chem.s
Eur. J. 2004, 10, 5607. (b) Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005,
70, 5164. (c) Ma, D.; Cai, Q. Synlett 2004, 128. (d) Alcalde, E.; Dinare`s,
I.; Rodr´ıguez, S.; Garcia de Miguel, C. Eur. J. Org. Chem. 2005, 1637. (e)
Kull, M.; Bekedam, L.; Visser, G. M.; van den Hoogenband, A.; Terpstra,
J. W.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; van Strijdonck, G. P.
F. Tetrahedron Lett. 2005, 46, 2405. (f) Liu, L.; Frohn, M.; Xi, N.;
Donminguez, C.; Hungate, R.; Reider, P. J. J. Org. Chem. 2005, 70, 10135.
(g) Jerphagnon, T.; van Klink, G. P. M.; de Vries, J. G.; van Koten, G.
Org. Lett. 2005, 7, 5241. (h) Xu, L.; Zhu, D.; Wang, R.; Wan, B.
Tetrahedron 2005, 61, 6553. (i) Zhang, Z.; Mao, J.; Zhu, D.; Wu, F.; Chen,
H.; Wan, B. Tetrahedron 2006, 62, 4435. (j) Hosseinzadeh, R.; Tajbakhsh,
M.; Alikarami, M. Tetrahedron Lett. 2006, 47, 5203. (k) Kantam, M. L.;
Venkanna, G. T.; Sridhar, C.; Kumar, K. B. Tetrahedron Lett. 2006, 47,
3897. (l) Xie, Y. X.; Pi, S. F.; Yin, D. L.; Li, J. H. J. Org. Chem. 2006, 71,
8324.
phenanthrolines (pKa L1a-H+ ) 4.86 and pKa L1c-H+
)
6.45).17 The more electron-rich ligand should stabilize the
presumed Cu(III) intermediate (Scheme 1, IV) and lower the
oxidation potential for the Cu(I)-Cu(III) redox pair, thus
accelerating the rate limiting aryl halide activation.18
(15) Altman, R. A.; Buchwald, S. L. Org. Lett. 2006, 8, 2779.
(16) L1c is available from Aldrich or can been prepared on a large scale
in a four-step procedure. For details of the synthesis, see ref 15.
(17) Schilt, A. A.; Smith, G. F. J. Phys. Chem. 1956, 60, 1546.
(18) Similarly, (L1a)3Fe(PF6)2 has a higher oxidation potential than
(L1c)3Fe(PF6)2 (0.69 and 0.38 V vs SCE, respectively). Lewis, M.; Lu¨ning,
U.; Mu¨ller, M.; Schmittel, M.; Wo¨hrle, C. Z. Naturforsch., B: Chem. Sci.
1994, 49, 675.
J. Org. Chem, Vol. 72, No. 16, 2007 6191