4196
L. M. Thomasco et al. / Bioorg. Med. Chem. Lett. 13 (2003) 4193–4196
until the ice melted. The resulting yellow precipitate was
filtered and dried in a vacuum oven (30 ꢀC, 12 h) to give
7.9 g (25.4 mmol, 80%) of the thioamide 9. Mp 116–
119 ꢀC. 1H NMR (DMSO-d6) d 10.1 (s, 1H), 9.5 (s, 1H),
8.24 (t, J=6 Hz, 1H), 7.74 (t, J=9 Hz, 1H), 7.50 (dd,
J=13, 2 Hz, 1H), 7.31 (dd, J=9, 2 Hz, 1H), 4.76 (m,
1H), 4.14 (t, J=9 Hz, 1H), 3.76 (dd, J=9, 7 Hz, 1H),
3.43 (t, J=5 Hz, 2H), 1.83 (s, 3H); 13C NMR (CDCl3) d
195.8, 170.5, 157.3 (d, J=246.8 Hz), 154.4, 141.7 (d,
J=7.9 Hz), 132.3, 124.8 (d, J=13.6 Hz), 113.4, 105.2
(d, J=28.4 Hz), 72.4, 47.7; 41.8, 22.9; IR (mull) 3344,
3153, 1755, 1734, 1669, 1644, 1616, 1550, 1506, 1409,
1395, 1342, 1219, 1206, 1197 cmÀ1. HRMS (EI) calcd
for C13H14FN3O3S 311.0740, found 311.0744.
[a]2D5=À32 (c 0.99, DMSO). Anal. calcd for
C13H14FN3O3S: C, 50.15; H, 4.53; N, 13.50; S, 10.30.
Found: C, 50.54; H, 4.70; N, 13.04; S, 9.60.
General procedure for preparation of 1,3,4-thiadiazole
oxazolidinone analogues from acid chlorides. To a stirred
suspension of the thiobenzhydrazide 6 (1.0 mmol) in dry
THF(10 mL) was added the acid chloride (1.2–2.0
mmol). The reaction mixture was heated at reflux for 1–
6 h or until complete reaction was evident by TLC. The
cooled reaction mixture was concentrated. The resulting
residue was dissolved in CH3OH/CH2Cl2, adsorbed
onto silica gel and purified by silica gel chromatography
using 2.5–5% CH3OH in CH2Cl2 as the eluent to afford
the desired thiadiazole.
References and Notes
1. Rybak, M. J. J. Hosp. Infect. 2001, 49, S25.
2. Linden, P. K. Drugs 2002, 62, 425.
3. Khurshid, M. A.; Chou, T.; Carey, R.; Larsen, R.;
Conover, C.; Bornstein, S. L. MMWR Morb. Mortal. Wkly.
Rep. 2000, 48, 1165.
To a stirred suspension of the thioamide 9 (5.0 g, 16.1
mmol) in dry THF(80 mL) and CH Cl2 (80 mL) was
2
4. Thornsberry, C.; Sahm, D. F.; Kelly, L. J.; Critchley, I. A.;
Jones, M. E.; Evangelista, A. T.; Kalrowsky, J. A. Clin. Infect.
Dis. 2002, 34, S4.
5. Brickner, S. J. Curr. Pharm. Des. 1996, 2, 175.
6. Park, C. H.; Brittelli, C. L.; Wang, J.; Marsh, F. D.;
Gregory, W. A.; Wuonola, M. A.; McRipley, R. J.; Eberly,
V.S; Slee, A. M.; Forbes, M. J. Med. Chem. 1992, 1156.
7. Carlson, R. K.; Park, C.-H.; Gregory, W. A. US Patent
5,130,316, 1992. CAN 113:172003.
8. Lee, C. S.; Allwine, D. A.; Barbachyn, M. R.; Grega, K. C.;
Dolak, L. A.; Ford, C. W.; Jensen, R. J.; Seest, E. P.; Hamel,
J. C.; Schaadt, R. D.; Stapert, D.; Yagi, B. H.; Zurenko, G. E.;
Genin, M. J. Bioorg. Med. Chem. 2001, 9, 3243.
9. Hutchinson, D. K. US Patent 5,910,504, 1999. CAN
131:18998.
10. Kohrt, A.; Hartke, K. Liebigs Ann. Chem. 1992, 595.
11. Stillings, M. R.; Welbourne, A. P.; Walter, D. S. J. Med.
Chem. 1986, 29, 2280.
added methyl trifluoromethanesulfonate (2.0 mL, 17.7
mmol). The reaction was stirred at rt for 30 min, during
which time the reaction mixture became homogeneous.
Pyridine (3.9 mL, 48.3 mmol) was added and then H2S
gas was bubbled through the reaction mixture for 1 h
during which time the reaction mixture turned red-
orange in color. Excess H2S was swept out of the reac-
tion with a stream of nitrogen over 30 min. Hydrazine
monohydrate (2.6 mL, 53.1 mmol) was added and the
reaction mixture was stirred at room temperature for an
additional h during which time the red-orange color
disappeared. The reaction mixture was concentrated.
The resulting residue was dissolved in THF/CH3OH,
adsorbed onto silica gel and purified by silica gel chro-
matography using 2.5–5% CH3OH in CH2Cl2 as the
eluent to afford 2.51 g (7.7 mmol, 48%) of 6 as a yellow
solid. Mp 207–208 ꢀC. H NMR (DMSO-d6) d 12.1 (s,
1
12. Tokuyama, R.; Takahashi, Y.; Tomita, Y.; Suzuki, T.;
Yoshida, T.; Iwasaki, N.; Kado, N.; Okezaki, E.; Nagata, O.
Chem. Pharm. Bull. 2001, 49, 347.
1H), 8.23 (t, J=6, Hz, 1H), 7.54 (t, J=9, Hz, 1H), 7.45
(dd, J=14, 2 Hz, 1H), 7.29 (dd, J=9, 2, Hz, 1H), 6.2 (s,
1H), 4.73 (m, 1H), 4.11 (t, J=9, Hz, 1H), 3.77 (dd,
J=9, 6, Hz, 1H), 3.40 (t, J=5, Hz, 2H), 1.81 (s, 3H);
13C NMR (DMSO-d6) d 176.3, 170.5, 157.1 (d, J=245
Hz), 154.4, 140.0 (d, J=11 Hz), 131.9 (d, J=4 Hz), 123.4
(d, J=14 Hz), 113.5 (d, J=3 Hz), 105.2 (d, J=28 Hz),
72.3, 47.6, 41.8, 22.9; IR (mull) 3369, 3353, 3297, 1752,
1666, 1620, 1556, 1507, 1419, 1401, 1218, 1190, 1153,
1109, 865 cmÀ1; [a]D25=À25ꢀ (c 1.05, DMSO). Anal.
calcd for C13H15FN4O3S: C, 47.85; H, 4.63; N, 17.17; S,
9.82. Found: C, 48.03; H, 4.72; N, 16.86; S, 9.39.
13. Hester, J. B. US Patent 6,362,189, 2000.
14. National Committee for Clinical Laboratory Standards.
Methods for Dilution Antimicrobial Susceptibility Test for
Bacteria that Grow Aerobically, 6th ed.; Approved Standard;
NCCLS Document M7-A6; NCCLS; 940 West Valley Road,
Suite 1400, Wayne, PA, 2003; 19087 (broth micro dilution
method).
15. Ford, C. W.; Hamel, J. C.; Wilson, D. M. Antimicrob.
Agents Chemother. 1996, 40, 1508.
16. Gadwood, R. C.; Thomasco, L. M.; Anderson, D. J. US
Patent 5,977,373, 1999.