A. G. M. Barrett, M. S. Hill et al.
266 (100) [M + H]+. HRMS calcd. for C15H24FN3 266.2033 found Supporting Information (see also the footnote on the first page of
FULL PAPER
266.2045.
this article): Complete experimental details and spectra of all iso-
lated compounds and 1H and 13C{1H} NMR spectra of isolated
guanidine compounds.
Calcium Guanidinate 3a: To a solution of 2a (0.253 g, 0.5 mmol) in
THF (15 mL) was added a solution of 1,3-diisopropyl-2-phenyl-
guanidine (0.219 g, 1.0 mmol) in THF (10 mL). After 12 h at room
temperature the solvent was evaporated and the compound was
recrystallized from hexane/THF (10 mL/1 mL) at –20 °C yielding
colorless crystals of 3a (0.174 g, mmol, 60%). M.p. (10:1 hexane/
THF) 158–159 °C. Multinuclear NMR spectroscopic data as below
with additional resonances attributed to non-coordinated THF.
C34H56CaN6O2 (620.41): calcd. C 65.77, H 9.09, N 13.53; found C
65.69, H 8.97, N 13.62. M.p. (hexane/THF, 10:1) 158–159 °C.
Acknowledgments
We thank GlaxoSmithKline for the generous financial support (to
A. G. M. B.), the Royal Society of Chemistry for a University Re-
search Fellowship (M. S. H.) and Royal Society Wolfson Research
Merit Award (A. G. M. B.) and the Engineering and Physical Sci-
ences Research Council and GlaxoSmithKline for generous sup-
port of our studies.
Calcium Guanidinate 3b: Toluene (10 mL) was added to a solid mix-
ture of [Ca{N(SiMe3)2}2]2 (164 mg, 0.46 mmol) and 1,3-diisopro-
pyl-2-phenylguanidine (200 mg, 0.92 mmol). The mixture was
stirred for 30 min, filtered and the solvent volume reduced to in-
duce crystallization. The product 3b was isolated as a colorless
crystalline solid (127 mg, 0.133 mmol, 58%) by slow cooling of a
[1] a) T. P. Hanusa, Organometallics 2002, 21, 2559; b) T. P.
Hanusa, Chem. Rev. 1993, 93, 1023; c) J. S. Alexander, K.
Ruhlandt-Senge, Eur. J. Inorg. Chem. 2002, 2761; d) M. West-
erhausen, Angew. Chem. Int. Ed. 2001, 40, 2975; e) M. Gärtner,
H. Görls, M. Westerhausen, Synthesis 2007, 725; f) M. West-
erhausen, M. Gärtner, R. Fischer, J. Langer, Angew. Chem. Int.
Ed. 2007, 46, 1950; g) M. Westerhausen, M. Gärtner, R. Fi-
scher, J. Langer, L. Yu, M. Reiher, Chem. Eur. J. 2007, 13, 6292.
[2] a) M. R. Crimmin, I. J. Casely, M. S. Hill, J. Am. Chem. Soc.
2005, 127, 2042; b) S. Datta, P. W. Roesky, S. Blechert, Organo-
metallics 2007, 26, 4392; c) S. Datta, P. W. Roesky, S. Blechert,
Organometallics 2008, 27, 1207.
[3] M. R. Crimmin, A. G. M. Barrett, M. S. Hill, P. B. Hitchcock,
P. A. Procopiou, Organometallics 2007, 26, 2953.
[4] F. Buch, J. Brettar, S. Harder, Angew. Chem. Int. Ed. 2006, 45,
2741.
[5] a) A. Weeber, S. Harder, H. H. Brintzinger, Organometallics
2000, 19, 1325; b) F. Feil, S. Harder, Eur. J. Inorg. Chem. 2003,
3401; c) S. Harder, F. Feil, K. Knoll, Angew. Chem. Int. Ed.
2001, 40, 4261.
1
hot toluene solution to 5 °C. M.p. (toluene) 153–158 °C. H NMR
([D8]toluene, 298 K, 400 MHz): δ = 0.71 (d, J = 6.8 Hz, 12 H), 0.91
(apparent s, 12 H), 1.13 (d, J = 6.2 Hz, 12 H), 1.18 (d, J = 6.3 Hz,
12 H), 3.15 (hept, J = 6.3 Hz, 2 H), 3.27 (hept, J = 6.2 Hz, 2 H),
3.37 (hept, J = 6.8 Hz, 2 H), 3.41 (broad s, 4 H, NH), 3.58 (mul-
tiplet, 2 H), 6.75–6.79 (m, 2 H), 6.77–6.81 (m, 2 H), 7.07–7.14 (m,
8 H), 7.15–7.23 (m, 8 H) ppm. 1H NMR ([D8]toluene, 353 K,
400 MHz): δ = 0.82 (apparent broad s, 12 H), 1.14 (d, J = 6.0 Hz,
12 H), 3.25 (multiplet, 2 H), 3.44 (multiplet, 2 H), 3.57 (broad s, 4
H, NH), 6.72 (broad t, 4 H), 6.96–7.01 (m, 8 H), 7.06–7.13 (m, 8
H) ppm. 13C NMR ([D8]toluene, 298 K, 100 MHz): δ = 24.4, 24.5,
26.3, 27.2, 115.9, 118.4, 121.6, 122.7, 123.7, 130.4, 151.5, 154.9,
163.3, 164.9 ppm. C52H80Ca2N12 (952.59): calcd. C 65.45, H 8.39,
N 17.62; found C 65.53, H 8.33, N 17.57. M.p. (toluene) 155–
158 °C.
Xray Diffraction Data:[20] Data for [{(2-FC6H5)N}C{NHiPr}2] and
3a, 3b were collected at 150 K with a Nonius Kappa CCD dif-
fractometer equipped with a low-temperature device, using graph-
ite-monochromated Mo-Kα radiation (λ = 0.71073 Å). Data were
processed using the Nonius Software.[21] Structure solution, fol-
lowed by full-matrix least-squares refinement was performed using
either the WinGX-1.70 suite of programs[22] or the programme suite
X-SEED.[23] Notes on refinement: 3: F occupies both ortho posi-
tions in the ratio 60:40. 3a: C3/C3a represent 65:35 disorder over
2 sites. H3 and H6 located and refined at 0.9 Å from the parent
nitrogen atoms.
[6] a) M. H. Chisholm, J. C. Gallucci, K. Phomphrai, Inorg. Chem.
2004, 43, 6717; b) M. H. Chisholm, J. C. Gallucci, K.
Phomphrai, Chem. Commun. 2003, 48; c) L. Piao, M. Deng,
X. Chen, L. Jiang, X. Jing, Polymer 2003, 44, 2331; d) Z.
Zhong, S. Schneiderbauer, P. J. Dijkstra, M. Westerhausen, J.
Feijen, Polym. Bull. 2003, 51, 175; e) Z. Zhong, S. Schnei-
derbauer, P. J. Dijkstra, M. Westerhausen, J. Feijen, J. Pol. Env.
2002, 9, 31; f) M. Westerhausen, S. Schneiderbauer, A. N. Kne-
ifel, Y. Söltl, P. Mayer, H. Nöth, Z. Zhong, P. J. Dijkstra, J.
Feijen, Eur. J. Inorg. Chem. 2003, 3432.
[7] L. Orzechowski, S. Harder, Organometallics 2007, 26, 2144.
[8] M. R. Crimmin, A. G. M. Barrett, M. S. Hill, P. A. Procopiou,
Org. Lett. 2007, 9, 331.
[9] a) M. R. Crimmin, A. G. M. Barrett, M. S. Hill, P. B. Hitch-
cock, P. A. Procopiou, Organometallics 2008, 27, 497; b) For a
related use of Group-1 (Li, K) reagents to the hydrophosphin-
ation of 1,3-carbodiimides, see; W. X. Xhang, M. Nishiura, Z.
Hou, Chem. Commun. 2006, 3812; c) For a recent general re-
view of catalytic E-H addition to 1,3-carbodiimides, see; W.-X.
Zhang, Z. Hou, Org. Biol. Chem. 2008, 6, 1720.
[{(2-FC6H5)N}C{NHiPr}2]: C13H20FN3, M = 237.32, monoclinic,
P21/a, a = 8.5380(5) Å, b = 11.2920(7) Å, c = 14.0080(10) Å, β =
94.402(3), V = 1346.54(15) Å3, Z = 4, ρ = 1.171 gcm–3, R1
[IϾ2σ(I)] = 0.0498, wR2 [IϾ2σ(I)] = 0.115, R1 [all data] = 0.0913,
wR2 [all data] = 0.1358, measured reflections = 12160, unique re-
flections: 2358. Rint = 0.0889.
¯
3a: C34H56CaN6O2, M = 620.93, triclinic, P1, a = 8.2890(1) Å, b
[10] For reviews see: a) P. J. Bailey, S. Pace, Coord. Chem. Rev. 2003,
240, 157; b) M. P. Coles, Dalton Trans. 2006, 985.
= 12.1250(2) Å, c = 18.3840(3) Å, α = 87.296(1), β = 81.426(1), γ
= 77.981(1), V = 1786.72(5) Å3, Z = 2, ρ = 0.213 gcm–3, R1
[IϾ2σ(I)] = 0.0432, wR2 [IϾ2σ(I)] = 0.0988, R1 [all data] = 0.0653,
wR2 [all data] = 0.1097, measured reflections: 38968, unique reflec-
tions = 10421. Rint = 0.041.
[11] a) Guanidines: Historical, Biological, Biochemical and Clinical
Aspects of the Naturally Occuring Guanidino Compounds (Eds.:
A. Mori, B. D. Cohen, A. Lowenthal), Plenum Press, New
York, 1985; b) Guanidines 2: Further Exploration of the Bio-
logical and Clinical Significance of Guanidino Compounds (Eds.:
A. Mori, B. D. Cohen, H. Coide), Plenum Press, New York,
1987; c) The Pharmacological Basis for Therapeutics, 7th ed.
(Eds.: A. G. Gilman, L. S. Goodman, T. W. Rall, F. Murad),
Pergamon Press, New York, 1990, p. 899.
3b: C52H80Ca2N12,
M = 953.44, monoclinic, C2/c, a =
21.4319(3) Å, b = 13.2981(2) Å, c = 20.0986(3) Å, β = 107.9810(10),
V = 5448.40(14) Å3, Z = 4, ρ = 1.162 gcm–3, R1 [IϾ2σ(I)] =
0.0361, wR2 [IϾ2σ(I)] = 0.0832, R1 [all data] = 0.0481, wR2 [all
data] = 0.0901, measured reflections: 44403, unique reflections:
6262. Rint = 0.0425.
[12] a) T.-G. Ong, G. P. A. Yap, D. S. Richeson, J. Am. Chem. Soc.
2003, 125, 8100; b) F. Montilla, A. Pastor, A. Galindo, J. Or-
4178
www.eurjic.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2008, 4173–4179