Journal of the Iranian Chemical Society
9. K.R. More, R. Mali, Tetrahedron 72, 7496 (2016)
10. J.L. Pratihar, P. Mandal, C.-H. Lin, C.-K. Lai, D. Mal, Polyhedron
135, 224 (2017)
by the filtration of the reaction mixture and washed with
EtOH, and dried under vacuum at 80 °C for 2 h. The FT-IR
and FE-SEM analyses of the catalyst after six periods indi-
cated no detectable changes in the catalyst during the reac-
tion of the recovery steps (Fig. 9). These results clearly
indicate that the catalyst has high stability.
11. A.R. Hajipour, Z. Khorsandi, Catal. Commun. 77, 1 (2016)
12. S.S. Shendage, A.S. Singh, J.M. Nagarkar, Tetrahedron Lett. 55,
857 (2014)
13. D. Sahu, C. Sarmah, P. Das, Tetrahedron Lett. 55, 3422 (2014)
14. A. Guarnizo, I. Angurell, G. Muller, J. Llorca, M. Seco, O. Ros-
sell, M. Rossell, RSC Adv. 6, 68675 (2016)
To get more information about the leaching of palladium
in reaction, the reaction of iodobenzene with Methyl meth-
acrylate as a model reaction was studied. After completion
of the reaction and the workup for the first run, the amount
of leaching was determined by ICP-OES analysis to be
12.75 wt%. The amount of Pd leaching after the six run was
also determined by ICP-OES analysis to be only 9.85%, which
indicates the stability of the catalyst during the reaction.
The comparison of the activity of the catalyst presented
with various catalyst Pd in the Heck coupling reaction
15. S. Verma, D. Verma, A.K. Sinha, S.L. Jain, Appl. Catal. A 489,
17 (2015)
16. X.-D. Xiao, Y.-L. Bai, J.-Q. Liu, J.-W. Wang, Tetrahedron Lett.
57, 3385 (2016)
17. T. Taira, T. Yanagimoto, K. Sakai, H. Sakai, A. Endo, T. Imura,
Tetrahedron 7(2), 4117 (2016)
18. C.J. Madadrang, H.Y. Kim, G. Gao, N. Wang, J. Zhu, H. Feng,
M. Gorring, M.L. Kasner, S. Hou, ACS Appl Mater Interfaces 4,
1186 (2012)
19. J. Gou, Q. Ma, X. Deng, Y. Cui, H. Zhang, X. Cheng, X. Li, M.
Xie, Q. Cheng, Chem. Eng. J. 308, 818 (2017)
20. Y. Zhao, C. Tao, G. Xiao, G. Wei, L. Li, C. Liu, H. Su, Nanoscale
8, 5313 (2016)
21. W. Puthai, M. Kanezashi, H. Nagasawa, T. Tsuru, J. Membr. Sci.
524, 700 (2017)
Conclusions
22. J.C. Pessoa, M.R. Maurya, Inorg. Chim. Acta 455, 415 (2017)
23. D. Bonduel, S. Bredeau, M. Alexandre. F. Monteverde, P. Dubois,
J. Mater. Chem. 17, 2359 (2007)
In summary, mixed-ligand rGO-AAPTES-Pd(oxime)2 com-
plex was successfully prepared and characterized through
various analyses. The functionalized graphene complex was
synthesized simply by reacting covalently to a reactive sur-
factant. Hence, this study highlighted that rGO had higher
performance compared to other catalysts, since it is highly
efficient and economical, and show increased activity at
shorter reaction times and higher yields of products. The
high stability and catalytic activity of this solid catalyst were
related to Pd complexes. This method was efficient and sim-
ple, and is expected to be a useful synthetic protocol for syn-
thesis of a wide range of novel chemical organic materials.
24. C. Ruiz-García, J. Pérez-Carvajal, A. Berenguer-Murcia, M.
Darder, P. Aranda, D. Cazorla-Amorós, E. Ruiz-Hitzky, Phys.
Chem. Chem. Phys. 15, 18635 (2013)
25. Z. Zhang, B. Liu, K. Lv, J. Sun, K. Deng, Green Chem. 16, 2762
(2014)
26. N. Mansor, T.S. Miller, I. Dedigama, A.B. Jorge, J. Jia, V. Bráz-
dová, C. Mattevi, C. Gibbs, D. Hodgson, P.R. Shearing, Electro-
chimica Acta 222, 44 (2016)
27. S.M. Sarkar, M.L. Rahman, M.M. Yusoff, New J. Chem. 39, 3564
(2015)
28. M. Amini, M. Bagherzadeh, Z. Moradi-Shoeili, D.M. Boghaei,
RSC Adv. 2, 12091 (2012)
29. M. Heidarizadeh, E. Doustkhah, S. Rostamnia, P.F. Rezaei, F.D.
Harzevili, B. Zeynizadeh, Int. J. Biol. Macromol. 101, 696 (2017)
30. H. Li, X. Zhu, H. Sitinamaluwa, K. Wasalathilake, L. Xu, S.
Zhang, C. Yan, J. Alloy. Compd. 714, 425 (2017)
31. R.H. Fath, S.J. Hoseini, H.G. Khozestan, J. Organomet. Chem.
842, 1 (2017)
Acknowledgements The authors thank the Lorestan University
Research Council for the support of this work.
32. J. Safari, S. Gandomi-Ravandi, S. Ashiri, New J. Chem. 40, 512
(2016)
33. G.C. Dickmu, L. Stahl, I.P. Smoliakova, J. Organomet. Chem. 756,
27 (2014)
References
34. K.A. Kumar, L. Chandana, P. Ghosal, C. Subrahmanyam, Mol.
Catal. 451, 87 (2017)
1. M.R. dos Santos, R. Coriolano, M.N. Godoi, A.L. Monteiro, H.C.
de Oliveira, M.N. Eberlin, B.A. Neto, New J. Chem. 38, 2958
(2014)
35. S. Mahalingam, J. Ramasamy, Y.-H. Ahn, J. Taiwan Inst. Chem.
Eng. 80, 276 (2017)
36. G. Yang, L. Li, R.K. Rana, J.-J. Zhu, Carbon 61, 357 (2013)
37. J.Y. Park, S. Kim, Int. J. Hydrog. Energy 38, 6275 (2013)
38. G. Wu, X. Wang, N. Guan, L. Li, Appl. Catal. B 136, 177 (2013)
39. A.R. Siamaki, S.K. Abd El Rahman, V. Abdelsayed, M.S. El-
Shall, B.F. Gupton, J. Catal. 279, 1 (2011)
2. Y. Zhu, J. Bai, J. Wang, C. Li, RSC Adv. 6, 29437 (2016)
3. K.R. Balinge, P.R. Bhagat, Comptes Rendus Chimie 20, 773
(2017)
4. R.P. Jumde, M. Marelli, N. Scotti, A. Mandoli, R. Psaro, C. Evan-
gelisti, J. Mol. Catal. A Chem. 414, 55 (2016)
5. E. Mohammadi, B. Movassagh, J. Mol. Catal. A Chem. 418, 158
(2016)
40. F.R. Fortea-Pérez, M. Julve, E.V. Dikarev, A.S. Filatov, S.-E.
Stiriba, Inorganica Chimica Acta (2017)
41. S.D. Dindulkar, D. Jeong, H. Kim, S. Jung, Carbohydr. Res. 430,
85 (2016)
6. H.-P. Gong, Z.-J. Quan, X.-C. Wang, Tetrahedron 72, 2018 (2016)
7. K. Gholivand, R. Salami, K. Farshadfar, R.J. Butcher, Polyhedron
119, 267 (2016)
42. M. Amini, D.B. Heydarloo, M. Rahimi, M.G. Kim, S. Gautam,
K.H. Chae, Mater. Res. Bull. 83, 179 (2016)
8. M.E. Martínez-Klimov, P. Hernandez-Hipólito, T.E. Klimova,
D.A. Solís-Casados, M. Martínez-García, J. Catal. 342, 138
(2016)
43. E. Rafiee, M. Kahrizi, J. Mol. Liq. 218, 625 (2016)
44. F. Ashouri, M. Zare, M. Bagherzadeh, C. R. Chim. 20, 107 (2017)
1 3