2220
N. Catozzi et al.
LETTER
References and Notes
Table 3 Scope of Silica Method for Pyridazine Synthesis
H
(1) For recent references, see: (a) Bagley, M. C.; Glover, C.
Tetrahedron 2006, 62, 66. (b) Belhadj, T.; Nowicki, C.;
Moody, C. J. Synlett 2006, 3033. (c) Kozhevnikov, V. N.;
Kozhevnikov, D. N.; Shabunina, O. V.; Rusinov, V. L.;
Chupakhin, O. N. Tetrahedron Lett. 2005, 46, 1521.
(d) Kozhevnikov, V. N.; Kozhevnikov, D. N.; Shabunina, O.
V.; Rusinov, V. L.; Chupakhin, O. N. Tetrahedron Lett.
2005, 46, 1791. (e) Altuna-Urquijo, M.; Stanforth, S. P.;
Tarbit, B. Tetrahedron Lett. 2005, 46, 6111; and references
therein.
(2) (a) Raw, S. A.; Taylor, R. J. K. Chem. Commun. 2004, 508.
(b) Fernandez Sainz, Y.; Raw, S. A.; Taylor, R. J. K. J. Org.
Chem. 2005, 70, 10086. (c) Laphookhieo, S.; Jones, S.;
Raw, S. A.; Fernández Sainz, Y.; Taylor, R. J. K.
Tetrahedron Lett. 2006, 47, 3865. (d) See also (pyridazine
synthesis) Geyelin, P. H.; Raw, S. A.; Taylor, R. J. K.
ARKIVOC 2007, (xi), 37.
O
N
R5
R1
R1
R4
R5
R4
6
2
N
N
N
N
N
N
toluene, ∆,
silica
R3
R3
7
8
Entry
1
Tetrazine and ketone
Producta
Ph
N
N
7a R1 = Ph
R3 = Ph
Ph
(3) For recent applications of triazines, see: (a) Vzorov, A. N.;
Bhattacharyya, D.; Marzilli, L. G.; Compans, R. W.
Antiviral Res. 2005, 65, 57. (b) Wang, X.-L.; Chao, H.; Li,
H.; Hong, X.-L.; Liu, Y.-J.; Tan, L.-F.; Ji, L.-N. Inorg.
Biochem. 2004, 98, 1143. (c) Hudson, M. J.; Drew, M. G.
B.; Foreman, M. R. St. J.; Hill, C.; Huet, N.; Madic, C.;
Youngs, T. G. A. Dalton Trans. 2003, 1675. (d) Abdel-
Rahman, R. M. Pharmazie 2001, 56, 195. (e) Croot, P. L.;
Hunter, K. A. Anal. Chim. Acta 2000, 406, 289.
(4) (a) Boger, D. L.; Weinreb, S. N. Hetero Diels–Alder
Methodology in Organic Synthesis; Academic Press:
London, 1987, Chap. 10, 300. (b) Boger, D. L. Chem. Rev.
1986, 86, 781. (c) Boger, D. L. Tetrahedron 1983, 39, 2869.
(d) Boger, D. L.; Panek, J. S. J. Org. Chem. 1981, 46, 2179.
(e) Boger, D. L.; Panek, J. S.; Meier, M. M. J. Org. Chem.
1982, 47, 895.
(2a) Cyclopentanone
8a; 120 °C, 10 h, 98%
Ph
N
N
7a R1 = Ph
2
R3 = Ph
Ph
(2b) Cyclohexanone
8b; 120 °C, 15 h, 82%
Py
N
N
3
7b R1 = Ph
R3 = Py
Py
(5) Chenard, B. L.; Ronau, R. T.; Schulte, G. A. J. Org. Chem.
1988, 53, 5175.
(6) Representative Procedure
(2b) Cyclohexanone
8c; 160 °C, 4 h, 50%
a Previously reported yield for TIE method (ref. 2d): 11a 93%, 11b
85%, 11c 41%.
A suspension of triazine 1a (50 mg, 0.21 mmol), pyrrolidine
(6, 26 mL, 0.31 mmol), cyclopentanone (2a, 27 mL, 0.31
mmol) and silica (Fluka, flash chromatography silica gel 60,
220–440 mesh, 200 mg) in toluene (4 mL) was heated under
reflux for 5 h. The reaction mixture was cooled to r.t., diluted
with EtOAc (6 mL), and stirred an additional 20 min at the
same temperature. The mixture was then filtered through a
Celite pad, concentrated and the residue obtained was eluted
from a column of silica (PE–EtOAc, 5:1) yielding the
desired pyridine 5a (57 mg, 99%); data were consistent with
those reported in ref. 2b.
steroid 10 in 67% yield (37% in refluxing conditions).11 It
should be noted that in this example an efficient conver-
sion was observed only when the silica gel was added
after the formation of the dihydropyridine intermediate12
(in all the other cases all components were introduced at
the commencement of the reaction).
In conclusion, a straightforward one-pot procedure for
the preparation of highly substituted pyridines and
pyridazines has been developed based on an in situ silica-
mediated elimination–aromatisation step. The effective-
ness and general applicability of this protocol has been
demonstrated, indicating that the ‘silica approach’ is the
method of choice for the preparation of highly substituted
pyridines, especially on preparative scale.
(7) Banerjee, A. K.; Laya, M. S.; Vera, W. J. Russ. Chem. Rev.
2001, 70, 971.
(8) Similar reactions were carried out in which the silica gel was
replaced by stoichiometric amounts of HCl, MeCOOH,
Et3N, or 1,5-diazabicyclo[4.3.0]non-5-ene (DBU). None of
these reactions produced pyridines 5 in significant
quantities.
(9) (a) Helm, M. D.; Moore, J. E.; Plant, A.; Harrity, J. P. A.
Angew. Chem. Int. Ed. 2005, 44, 3889. (b) Atfah, M. A.
J. Heterocycl. Chem. 1989, 26, 717.
(10) Fischer, D. S.; Allan, G. M.; Bubert, C.; Vicker, N.; Smith,
A.; Tutill, H. J.; Wood, A. P. L.; Packham, G.; Mahon, M.
F.; Reed, M. J.; Potter, B. V. L. J. Med. Chem. 2005, 48,
5749; and references therein.
(11) The structure of the cycloaddition product 10 was assigned
using NOE and HMBC NMR experiments.
Acknowledgment
We are grateful to the EPSRC (N.C. and W.J.B.), GlaxoSmithKline
(W.J.B.) and Fond Special de Recherche, Université Catholique de
Louvain (P.W.) for financial support.
(12) A solution of triazine 1a (100 mg, 0.43 mmol), pyrrolidine
(6, 52 mL, 0.64 mmol) and estrone (9) (113 mg, 0.42 mmol)
in xylene (4 mL) was heated in a screwcapped tube at 160 °C
Synlett 2007, No. 14, 2217–2221 © Thieme Stuttgart · New York