of this framework via the R,R′-annulation strategies tradition-
ally employed in the construction of bicyclo[3.3.1]nonan-
9-ones.6 In fact, there has been very little work reported on
the synthesis of 2,2-dimethylbicyclo[3.3.1]nonan-9-ones with
both bridgehead positions substituted as required for con-
struction of the garsubellin A (1) skeleton.7 In light of this,
we considered a strategy as outlined in the simplified
retrosynthetic analysis of Scheme 1. Examination of the
C-1-C-2 bond with concomitant installation of a radical
precursor at C-3. Encouragingly, as shown in Scheme 1, Ley
et al. had previously accomplished the construction of bicycle
8 by treatment of an allyl-substituted â-keto ester 6 with a
variety of selenium donors and catalysts to initially afford
the kinetically favored O-cyclized furan 7, which was
subsequently equilibrated to the thermodynamically favored
carbocycle 8.8 Thus, we constructed the corresponding
prenylated â-keto ester model system 9 (Scheme 1) and using
similar conditions, obtained the O-cyclized furan 10 in 88%
yield. Unfortunately, furan 10 proved resistant toward
equilibration to the desired 2,2-dimethylbicyclo[3.3.1]nonan-
9-one 11 even upon prolonged exposure (24 h) to a variety
of Lewis acids (see Scheme 1) resulting only in decomposi-
tion. This failure forced us to consider a strategy for masking
the nucleophilicity of the enolic oxygen, thereby providing
direct access to the desired carbocyclic product. We postu-
lated that acetylation of the enolic oxygen would inhibit
O-cyclization9 and, as proposed in intermediate 13, might
lead to the desired C-cyclization through in situ, nucleophi-
cally assisted cleavage of the acetate during carbon-centered
attack on a pendent epi-selenium complex. To test this
hypothesis, we prepared enol acetate 12, and gratifyingly,
upon treatment with N-(phenylseleno)phthalimide (N-PSP)10
and SnCl4 at -78 °C for 5 min, it underwent exclusive
conversion to the desired carbocycle 11, in 94% yield.
Encouraged by the facility and selectivity of this cycliza-
tion at low temperature, we sought to determine its synthetic
utility focusing on three criteria: (a) tolerance toward
increasing substitution on the cyclohexane framework as
required for the construction of various natural and designed
products; (b) effect of olefin substitution on the regioselec-
Scheme 1. General Retrosynthetic Analysis and Model
Studies of Selenium-Mediated Cyclizationsa
(4) For examples, see: Gustafson, K. R.; Blunt, J. W.; Munro, M. H.
G.; Fuller, R. W.; McKee, T. C.; Cardelina, J. H.; McMahon, J.; Gragg, G.
M.; Boyd, M. R. Tetrahedron 1992, 48, 10093-10102. Iinuma, M.; Tosa,
H.; Tanaka, T.; Kanamaru, S.; Asai, F.; Kobayashi, Y.; Miyauchi, K.;
Shimano, R. Biol. Pharm. Bull. 1996, 18, 311-314. Alves, T. M .A.; Alves,
R. O.; Romanha, A. J.; Santos, M. H.; Nagem, T. J.; Zani, C. L. J. Nat.
Prod. 1999, 62, 369-371. Oliveira, C. M. A.; Porto, A. M.; Bittrich, V.;
Vencato, I.; Marsaioli, A. J. Tetrahedron Lett. 1996, 37, 6427-6430.
(5) Oliveira, C. M. A.; Porto, A. L. M.; Bittrich, V.; Marsaioli, A. J.
Phytochemistry 1999, 50, 1073-1079.
(6) For examples, see: Taeschler, C.; Sorenson, T. S. J. Org. Chem.
1998, 63, 5704-5705. Harding, K. E.; Clement, B. A.; Moreno, L.;
Katalinic, J. P. J. Org. Chem. 1981, 46, 940-948. Padwa, A.; Kline, D.
N.; Murphree, S. S.; Yeske, P. E. J. Org. Chem. 1992, 57, 298-306. Peters,
J. A. Synthesis 1979, 321-336. Lu, X.; Huang, Y. Tetrahedron Lett. 1986,
27, 1615-1616.
(7) To the best of our knowledge, no substituted 2,2-dimethylbicyclo-
[3.3.1]nonan-9-one wherein both bridgehead positions are quaternary has
been reported. For examples of the construction of substituted 2,2-
dimethylbicyclo[3.3.1]nonan-9-one with at least one quaternary bridgehead
position, see: Firrel, N. F.; Hickmott, P. W.; Hopkins, B. J. J. Chem Soc.
C 1970, 1477-1480. Dauben, W. G.; Bunce, R. A. J. Org. Chem. 1983,
48, 4642-4648. Gambacorta, A.; Fabrizi, G.; Bovicelli, P. Tetrahedron
1992, 48, 4459-4464. Evans, E. H.; Hewson, A. T.; March, L. A.; Nowell,
I. W.; Wadsworth, A. H. J. Chem. Soc., Perkin Trans. 1 1987, 137-149.
(8) Jackson, W. P.; Ley, S. V.; Morton, J. A. J. Chem. Soc., Chem.
Commun. 1980, 1028-1029. Jackson, W. P.; Ley, S. V.; Whittle, A. J. J.
Chem. Soc., Chem. Commun. 1980, 1173-1174. Jackson, W. P.; Ley, S.
V.; Morton, J. A. Tetrahedron Lett. 1981, 22, 2601-2604.
(9) For precedent, see: Edstrom, E. D.; Livinghouse, T. J. Org. Chem.
1987, 52, 951-953. Tamelen, E. E; Hwu, J. R.; Leiden, T. M. J. Chem.
Soc., Chem. Commun. 1983, 62-63. Evans, E. H.; Hewson, A. T.;
Wadsworth, A. H. Synth. Comm. 1985, 15, 243-247.
(10) Nicolaou, K. C.; Claremon, D. A.; Barnette, W. E.; Seitz, S. P. J.
Am. Chem. Soc. 1979, 101, 3704-3706. Nicolaou, K. C.; Petasis, N. A.;
Claremon, D. A. Tetrahedron 1985, 41, 4835-4841.
a Conditions: (a) 1.1 equiv of N-PSP, 1.0 equiv of SnCl4, CH2Cl2,
0 °C 10 min; (b) 1.1 equiv of (SnCl4, TiCl4, ZnCl2, AlCl3, or
BF3OEt2), CH2Cl2, 0 to 25 °C, 24 h; (c) Ac2O, 4-DMAP, 80 °C,
30 min; (d) 1.1 equiv of N-PSP, 1.0 equiv of SnCl4, CH2Cl2, -78
°C, 5 min. Abbreviations: 4-DMAP ) 4-(dimethylamino)pyridine.
N-PSP ) N-(phenylseleno)phthalimide.
general skeleton 3 led to the realization that the C-3
substituent might be disconnected via a radical addition
transform leading to intermediate 4 which revealed the retron
for a powerfully simplifying selenium-induced endocycliza-
tion of a pendent olefin onto a suitably positioned â-dicar-
bonyl moiety. Such a cyclization would establish, in one step,
the bicycle through construction of the sterically demanding
808
Org. Lett., Vol. 1, No. 5, 1999