of our interest in heteroatom-substituted allenes4 and alkynes,
and in developing methodologies for synthesis of hetero-
cycles,5 we have been exploring the synthesis and reactivity
of a class of ynamines that may combine the stability of ynol
ethers with the reactivity of ynamines.
Table 1
Specifically, this class includes electron deficient ynamines
or ynamides (C) in which the nitrogen atom is substituted
with an electron-withdrawing group. Reactivities of ynamides
are almost unknown,3a,c although preparations and thermal
stabilities of ynamides have been documented.6,7 We report
here the first reactivity study of an electron deficient ynamine
toward aldehydes in hetero [2 + 2] cycloaddition reactions.
As shown in Scheme 1, hetero [2 + 2] cycloaddition
reactions of the ynamide 1 with aldehydes could lead to an
Scheme 1
stereoselective manner. We elected to examine this reaction
using the known electron deficient ynamine 4 which is a
vinylogous ynamide.9 Given the synthetic availability of 4
and its ease of handling [a stable crystalline solid],10 it serves
as an excellent model system for exploring reactivities of
electron deficient ynamines.
As shown in Table 1, the ynamide 4 was very reactive
toward an array of aldehydes under Lewis acidic conditions
to provide trisubstituted alkenes 5-1212- in high yields as
well as high E selectivities. These reactions were carried out
in the presence of either 0.1 or 0.25 equiv of BF3‚Et2O and
proceeded with equal efficiency as well as stereoselectivity
at -78 °C or room temperature. Dichloromethane was the
better solvent from a solubility perspective, but toluene was
a good solvent despite the reaction mixture being heteroge-
neous.
oxetene intermediate (2) that would undergo an electrocyclic
ring opening to give alkene 3.2,8 In addition, if such a reaction
can be rendered feasible with R,â-unsaturated aldehydes, then
dienes (also shown as 3) may also be prepared in a
(3) For recent examples, see: (a) Imbriglio, J.; Rainier, J. Abstracts of
Papers, 217th National Meeting of the American Chemical Society,
Anaheim, CA, Spring 1999; American Chemical Society: Washington, DC,
1999; ORGN-502. (b) Bernstein, R.; Foote, C. S. Tetrahedron Lett. 1998,
7051. (c) Witulski, B.; Stengel, T. Angew. Chem. Int. Ed. Engl. 1998, 37,
489. (d) Bloxham, J.; Dell, C. P. J. Chem. Soc., Perkin Trans. 1 1993,
3055. (e) Padwa, A.; Gareau, Y.; Harrison, B.; Rodriguez, A. J. Org. Chem.
1992, 57, 3540.
(4) Wei, L.-L.; Xiong, H.; Douglas, C. J.; Hsung, R. P. Tetrahedron
Lett. 1999, 6903.
(5) (a) Hsung, R. P. J. Org. Chem. 1997, 62, 7904. (b) Hsung, R. P.
Heterocycles 1998, 48, 421. (c) Granum, K. G.; Merkel, G.; Mulder, J. A.;
Debbins, S. A.; Hsung, R. P. Tetrahedron Lett. 1998, 9597. (d) Hsung, R.
P.; Shen, H. C.; Douglas, C. J.; Morgan, C. D.; Degen, S. J.; Yao, L. J. J.
Org. Chem. 1999, 64, 690. (e) Degen, S. J.; Mueller, K. L.; Shen, H. C.;
Mulder, J. A.; Golding, G. M.; Wei, L.-L.; Zificsak, C. A.; Hsung, R. P.
Bioorg. Med. Chem. Lett. 1999, 973. (f) Hsung, R. P.; Wei, L.-L.; Sklenicka,
H. M.; Douglas, C. J.; McLaughlin, M. J.; Mulder, J. A.; Yao, L. J. Org.
Lett. 1999, 1, 509. (g) Douglas, C. J.; Sklenicka, H. M.; Shen, H. C.;
Golding, G. M.; Mathias, D. S.; Degen, S. J.; Morgan, C. D.; Shih, R. A.;
Mueller, K. L.; Seurer, L. M.; Johnson, E. W.; Hsung, R. P. Tetrahedron
1999, 55, in press.
(6) (a) Novikov, M. S.; Khlebnikov, A. F.; Kostikov, R. R. J. Org. Chem.
USSR 1991, 27, 1576. (b) Tikhomirov, D. A.; Eremeev, A. V. Chem.
Heterocycl. Compd. 1987, 23, 1141. (c) Balsamo, A.; Macchia, B.; Macchia,
F.; Rossello, A. Tetrahedron Lett. 1985, 4141. (d) Janousek, Z.; Collard,
J.; Viehe, H. G. Angew. Chem., Int. Ed. Engl. 1972, 11, 917.
(7) Joshi, R V.; Xu, Z.-Q.; Ksebati, M. B.; Kessel, D.; Corbett, T. H.;
Drach, J. C.; Zemlicka, J. J. Chem. Soc., Perkin Trans. 1 1994, 1089.
(8) For a related account using ynamines, see: Fuks, R.; Viehe, H. G.
Chem. Ber. 1970, 103, 564.
The configuration of the double bond was assigned by
carrying out NOE experiments on alkene 5 and by obtaining
an X-ray crystal structure of compound 7. Assignments for
1
other compounds in Table 1 were determined by H NMR
(9) (a) Katritzky, A. R.; Ramer, W. H. J. Org. Chem. 1985, 50, 852. (b)
Ra´dl, S.; Kova´rova´, L. Collect. Czech. Chem. Commun. 1991, 56, 2413.
(c) Reisch, J.; Salehi-Artimani, R. A. J. Heterocycl. Chem. 1989, 26, 1803.
(d) Mahamoud, A.; Galy, J. P.; Vincent, E. J. Synthesis 1981, 917.
(10) We prepared compound 4 from acridone in two high-yielding steps
(89% overall). Deprotonated acridone was propargylated with propargyl
bromide in THF, and a subsequent isomerization of the terminal alkyne to
the ynamide 4 was carried out by using KOH in DMSO at room temperature.
Also see ref 9a.
(11) Marshall, J. A.; Shearer, B. G.; Crooks, S. L. J. Org. Chem. 1987,
52, 1236.
1
(12) All new compounds are identified and characterized by H NMR,
13C NMR, FTIR, and LRMS (see Supporting Information).
1238
Org. Lett., Vol. 1, No. 8, 1999