The interpretation of the experimental 3JC4ЈP, 3JC2ЈP and 3JH3ЈP
coupling constants has been performed with the assumption of
10 B. Song, G. Oswald, J. Zhao, B. Lippert and H. Sigel, Inorg. Chem.,
1998, 37, 4857.
11 H. Sigel, B. Song, G. Oswald and B. Lippert, Chem. Eur. J., 1998, 4,
1053.
a three-state εt,N
εt,S
ε
Ϫ,S conformational equilibrium. The
three-parameter Karplus equations34 for 3JCP = 9.1 cos2Φ Ϫ 1.9
12 H. P. M. de Leeuw, C. A. G. Haasnoot and C. Altona, Isr. J. Chem.,
1980, 20, 108.
13 C. Altona and M. Sundaralingam, J. Am. Chem. Soc., 1972, 94,
8205.
cosΦ ϩ 0.8 and JHP = 15.3 cos2Φ Ϫ 6.2 cosΦ ϩ 1.5 have been
3
used in the calculation of 3JCP and 3JHP coupling constants from
the ε torsion angles in the hypothetical εt,S, εϪ,S and εt,N con-
formers and their respective populations, which were iterated to
find the best fit with the experimental temperature-dependent
3JC4ЈP, 3JC2ЈP and 3JH3ЈP coupling constants.
14 C. Altona and M. Sundaralingam, J. Am. Chem. Soc., 1973, 95,
2333.
15 J. Plavec, W. Tong and J. Chattopadhyaya, J. Am. Chem. Soc., 1993,
115, 9734.
16 J. Plavec, C. Thibaudeau and J. Chattopadhyaya, Pure Appl. Chem.,
1996, 68, 2137.
17 C. Thibaudeau, J. Plavec and J. Chattopadhyaya, J. Org. Chem.,
1996, 61, 266.
18 M. Polak and J. Plavec, Nucleosides, Nucleotides, 1998, 17, 2011.
19 M. Polak and J. Plavec, Eur. J. Inorg. Chem., 1999, 547.
20 H. Huang, L. Zhu, B. R. Reid, G. P. Drobny and P. B. Hopkins,
Science, 1995, 270, 1842.
21 J. Arpalahti, M. Mikola and S. Mauristo, Inorg. Chem., 1993, 32,
3327.
22 M. Mikola, K. D. Klika, A. Hakala and J. Arpalahti, Inorg. Chem.,
1999, 38, 571.
23 M. D. Reily and L. G. Marzilli, J. Am. Chem. Soc., 1986, 108, 8299.
24 J. Kozelka and G. Barre, Chem. Eur. J., 1997, 3, 1405.
25 R. B. Martin, Chem. Rev., 1996, 96, 3043.
26 F. A. A. M. de Leeuw and C. Altona, J. Comput. Chem., 1983, 4,
428.
27 C. Haasnoot, F. A. A. M. de Leeuw, D. Huckriede, J. van Wijk and
C. Altona, PSEUROT – A program for the conformational analysis
of five membered rings, Leiden, Netherlands, 1993.
28 H. Rosemeyer, G. Toth, B. Golankiewicz, Z. Kazimierczuk, W.
Bourgeois, U. Kretschmer, H.-P. Muth and F. Seela, J. Org. Chem.,
1990, 55, 5784.
Acid–base properties
The pKa-values of 1–4 (Fig. 2A) were calculated from the
sigmoidal curves which were the best iterative least-squares
fits (r.m.s. error < 0.003 ppm) of the pH*-dependent experi-
1
mental H NMR chemical shifts according to the Henderson–
Hesselbach equation (1):
[A]
1 Ϫ α
(1)
pH* = pKa ϩ log
= pKa ϩ log
[AH]
α
We have additionally constructed Hill plots of pH* as a
function of the logarithm of the ratio of the protonated and
deprotonated species. The Pearson’s correlation coefficients (R)
of the linear regression lines in Hill plots are above 0.994
for 1–4. The slopes are close to 1, which is the characteristic
indication for the protonation involving a single protonation
site. The populations of S-type pseudorotamers and ∆GЊ as a
function of pH* (Fig. 2B and 2C) were analyzed in a similar
way.
29 P. P. Lankhorst, C. A. G. Haasnoot, C. Erkelens and C. Altona,
J. Biomol. Struct. Dyn., 1984, 1, 1387.
30 M. M. W. Mooren, S. S. Wijmenga, G. A. van der Marel, J. H. van
Boom and C. W. Hilbers, Nucleic Acids Res., 1994, 22, 2658.
31 J. Plavec and J. Chattopadhyaya, Tetrahedron Lett., 1995, 36, 1949.
32 C. A. G. Haasnoot, F. A. A. M. de Leeuw, H. P. M. de Leeuw and
C. Altona, Recl. Trav. Chim. Pays-Bas, 1979, 98, 576.
33 J. Plavec, C. Thibaudeau, G. Viswanadham, A. Sandström and
J. Chattopadhyaya, Tetrahedron, 1995, 51, 11775.
34 P. P. Lankhorst, C. A. G. Haasnoot, C. Erkelens, H. P. Westerink,
G. A. van der Marel, J. H. van Boom and C. Altona, Nucleic Acids
Res., 1985, 13, 927.
Acknowledgements
We thank the Ministry of Science and Technology of Republic
of Slovenia (Grant No. Z1-8609-0104), and the Swedish
Natural Science Research Council (NFR), the Swedish Board
for Technical Development (NUTEK) and the Swedish
Engineering Research Council (TFR) for generous financial
support.
35 M. J. J. Blommers, D. Nanz and O. Zerbe, J. Biomol. NMR, 1994, 4,
595.
36 A. Gelasco and S. J. Lippard, Biochemistry, 1998, 37, 9230.
37 G. S. Ti, B. L. Gaffney and R. A. Jones, J. Am. Chem. Soc., 1982,
104, 1316.
38 A. Sandström, M. Kwiatkowski and J. Chattopadhyaya, Acta Chem.
Scand., Sect. B, 1985, 39, 273.
39 C. Sund, P. Agback, L. H. Koole, A. Sandström and J.
Chattopadhyaya, Tetrahedron, 1992, 48, 695.
40 W. T. Markiewicz, J. Chem. Res. (S), 1979, 24.
41 B. E. Griffin, M. Jarman and C. B. Reese, Tetrahedron, 1968, 24,
639.
42 M. J. Robins, J. S. Wilson and F. Hansske, J. Am. Chem. Soc., 1983,
105, 4059.
43 M. A. Morgan, S. A. Kazakov and S. M. Hecht, Nucleic Acids Res.,
1995, 23, 3949.
44 C. Altona, R. Francke, R. de Haan, J. H. Ippel, G. J. Daalmans,
A. J. A. Westra Hoekzema and J. van Wijk, Magn. Reson. Chem.,
1994, 32, 670.
References
1 M. J. Bloemink and J. Reedijk, in Metal Ions in Biological Systems,
ed. A. Sigel and H. Sigel, Marcel Dekker Inc., New York, 1996,
vol. 32, pp. 641–685.
2 D. Kiser, F. P. Intini, Y. Xu, G. Natile and L. G. Marzilli, Inorg.
Chem., 1994, 33, 4149.
3 S. K. Miller and L. G. Marzilli, Inorg. Chem., 1985, 24, 2421.
4 S. O. Ano, F. P. Intini, G. Natile and L. G. Marzilli, J. Am. Chem.
Soc., 1998, 120, 12017.
5 S. O. Ano, F. P. Intini, G. Natile and L. G. Marzilli, J. Am. Chem.
Soc., 1997, 119, 8570.
6 Z. J. Guo, Y. Chen, E. Zang and P. J. Sadler, J. Chem. Soc., Dalton
Trans., 1997, 4107.
7 J. M. Teuben, S. S. G. E. van Boom and J. Reedijk, J. Chem. Soc.,
Dalton Trans., 1997, 3979.
8 M. J. Bloemink, E. L. M. Lempers and J. Reedijk, Inorg. Chim. Acta,
1990, 176, 317.
9 F. J. Dijt, G. W. Canters, J. H. J. den Hartog, A. T. M. Marcelis and
J. Reedijk, J. Am. Chem. Soc., 1984, 106, 3644.
Paper 9/02330E
J. Chem. Soc., Perkin Trans. 1, 1999, 2835–2843
2843