J. Am. Chem. Soc. 1999, 121, 7773-7777
7773
5-F2t-Isoprostane, A Human Hormone?
Douglass F. Taber,* Kazuo Kanai, and Richard Pina
Contribution from the Department of Chemistry and Biochemistry, UniVersity of Delaware,
Newark, Delaware 19716
ReceiVed March 17, 1999
Abstract: Syntheses of the four enantiomerically pure diastereomers of 5-F2t-isoprostane (5-8) are described.
The key step is the lipase-catalyzed chemo-enzymatic resolution of the racemic diol 40 to give the mono-
acetates 41 and 42. The enantiomerically pure diastereomers of 5-F2t-isoprostane (5) may be human hormones.
Introduction
In 1990, prostaglandin (PG) F2-like compounds were dis-
covered to be produced in abundance in vivo by free radical-
induced peroxidation of arachidonic acid (1), independent of
the cyclooxygenase enzymes.1 Because these compounds are
isomeric to the PGF2R derived by the action of cyclooxygenase,
they were named F2-isoprostanes.2 Subsequently, it was dem-
onstrated that D2-isoprostanes and E2-isoprostanes are also
produced in vivo as products of this pathway.3 Four different
regioisomers of each of these classes of isoprostanes are formed
(e.g., 8-F2t-isoprostane 2, 12-F2t-isoprostane 3, 15-F2t-isoprostane
4, 5-F2t-isoprostane 5). 15-F2t-Isoprostane (4), prepared by total
synthesis,4-11 has been shown to have hormonal activity, with
a receptor in the kidney vasculature.12 To investigate the
biological activity4 of the other isoprostanes, it will be necessary
to devise synthetic routes to them. We report herein the first
preparation of each of the four enantiomerically pure isomers
of 5-F2t-isoprostane (5-8).
(1) Morrow, J. D.; Hill, K. E.; Burk, R. F.; Nammour, T. M.; Badr, K.
F.; Roberts, L. J., II. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 9383.
(2) (a) For a summary of isoprostane nomenclature, see Taber, D. F.;
Morrow, J. D.; Roberts, L. J., II. Prostaglandins 1997, 53, 63. (b) For an
alternative nomenclature system for the isoprostanes, see Rokach, J.;
Khanapure, S. P.; Hwang, S. W.; Adiyaman, M.; Lawson, J. A.; FitzGerald,
G. A. Prostaglandins 1997, 54, 853.
(3) Morrow, J. D.; Minton, T. A.; Mukundan, C. R.; Campbell, M. D.;
Zackert, W. E.; Daniel, V. C.; Badr, K. F.; Blair, I. A.; Roberts, L. J., II.
J. Biol. Chem. 1994, 269, 4317.
(4) Morrow, J. D.; Roberts, L. J., II. Biochem. Pharmacol. 1996, 51, 1.
(5) For synthetic routes to 15-F2t-isoprostane: (a) Corey, E. J.; Shih,
C.; Shih. N.-Y.; Shimoji, K. Tetrahedron Lett. 1984, 25, 5013. (b) Hwang,
S. W.; Adiyaman, M.; Khanapure, S.; Schio, L.; Rokach, J. J. Am. Chem.
Soc. 1994, 116, 10829. (c) Taber, D. F.; Herr, R. J.; Gleave, D. M. J. Org.
Chem. 1997, 62, 194. (d) Taber, D. F.; Kanai, K. Tetrahedron 1998, 54,
11767.
(6) For synthetic routes to 15-F2c-isoprostane: (a) Larock, R. C.; Lee,
N. H. J. Am. Chem. Soc. 1991, 113, 7815. (b) Vionnet, J.-P.; Renaud, P.
HelV. Chim. Acta 1994, 77, 1781. (c) Hwang, S. W.; Adiyaman, M.;
Khanapure, S. P.; Rokach, J. Tetrahedron Lett. 1996, 37, 779.
(7) (a) For a synthetic route to 15-E2t-isoprostane: Taber, D. F.; Hoerrner,
R. S. J. Org. Chem. 1992, 57, 441. (b) See also ref 5d.
Results and Discussion
The 5-isoprostanes are produced in vivo as racemic mixtures
of C-5 diastereomers. Rather than design an independent
synthesis of each of the four enantiomerically pure diastereomers
of a particular isoprostane, it seemed more sensible to develop
a stereodivergent synthesis that would lead to each of the four
from a common intermediate.
We proposed (Scheme 1) to prepare 5-F2t-isoprostane (5),
5-epi-5-F2t-isoprostane (6), ent-5-F2t-isoprostane (7), and 5-epi-
ent-5-F2t-isoprostane (8) by aldol condensation of the diazo-
ketone 9 with the aldehyde 10, followed by cyclization of
the silyloxy ketone 11. The relative configuration of the alkyl
side chains on the ring would then be established by kinetic
opening of the activated cyclopropane of the bicyclic ketone
12 with thiophenol and BF3‚OEt2. A key question was whether
the cyclization of the diazoketone 11, having a trans,cis
conjugated side chain, would give the desired bicyclic ketone
12 efficiently.
(8) For a synthetic route to 5-F2t-isoprostane: Adiyaman, M.; Lawson,
J. A.; Hwang, S.-W.; Khanapure, S. P.; FitzGerald, G. A.; Rokach, J.
Tetrahedron Lett. 1996, 37, 4849.
(9) For a synthetic route to 5-F2c-isoprostane: Adiyaman, M.; Lawson,
J. A.; FitzGerald, G. A.; Rokach, J. Tetrahedron Lett. 1998, 39, 7039.
(10) For a synthetic route to 8-F2t-isoprostane: Adiyaman, M.; Li, H.;
Lawason, J. A.; Hwang, S.-W.; Khanapure, S. P.; FitzGerald, G. A.; Rokach,
J. Tetrahedron Lett. 1997, 38, 3339.
(11) For a synthetic route to 12-F2t-isoprostane: Pudukulathan, Z.;
Manna, S.; Hwang, S.-W.; Khanapure, S. P.; Lawson, J. A.; FitzGerald, G.
A.; Rokach, J. J. Am. Chem. Soc. 1998, 120, 11953.
(12) (a) Morrow, J. D.; Minton, T. A.; Roberts, L. J., II. Prostaglandins
1992, 44, 155. (b) Fukunaga, M.; Makita, N.; Roberts, L. J., II.; Morrow,
J. D.; Takahashi, K.; Badr, K. F. Am. J. Physiol (Cell Physiol. 33) 1993,
264, C1619. (c) Takahashi, K.; Nammour, T. M.; Fukunaga, M.; Ebert, J.;
Morrow, J. D.; Roberts, L. J., II; Hoover, R. L.; Badr, F. K. J. Clin. InVest.
1992, 990, 136. (d) Longmire, A. W.; Roberts, L. J., II.; Morrow, J. D.
Prostaglandins 1994, 48, 247. (e) Fukunaga, M.; Takahashi, K.; Badr, K.
F. Biochem. Biophys. Res. Commun. 1993, 195, 507.
10.1021/ja990859k CCC: $18.00 © 1999 American Chemical Society
Published on Web 08/13/1999