Notes
J . Org. Chem., Vol. 64, No. 24, 1999 8951
atoms (6 keV) from a matrix of glycerol and thioglycerol. In the
amino acid analysis glutamine was determined as glutamic acid.
Analytical normal-phase HPLC was performed on a Kromasil
silica column (100 Å, 5 µm, 4.6 mm × 250 mm) with a flowrate
of 2 mL/min and detection at 254 nm. Preparative purifications
were performed on a Kromasil silica column (100 Å, 5 µm, 20
mm × 250 mm) with a flowrate of 20 mL/min. Glycopeptide 1
was analyzed on reversed phase using a Kromasil C-8 column
(100 Å, 5 µm, 4.6 mm × 250 mm) and a linear gradient of 0% f
100% of B in A over 60 min with a flow rate of 1.5 mL/min and
detection at 214 nm (solvent systems: A, 0.1% aqueous trifluo-
roacetic acid; B, 0.1% trifluoroacetic acid in CH3CN). Purification
of crude 1 was performed on a Kromasil C-8 column (100 Å, 5
µm, 20 mm × 250 mm) using the same eluant and a flow rate of
11 mL/min.
28.2, 28.1, 28.0, 26.7, 26.2, 19.1; HRMS (FAB) calcd for
C
57H66N2O12SiNa 1021.4283 (M + Na+), found 1021.4305.
Eth yl 6-O-Tr iisop r op ylsilyl-1-th io-â-D-glu cop yr a n osid e
(16). Triisopropylsilyl chloride (1.14 mL, 5.35 mmol) was added
to a solution of ethyl 1-thio-â-D-glucopyranoside22 (15, 1.00 g,
4.45 mmol) and imidazole (759 mg, 11.2 mmol) in DMF (10 mL)
at 0 °C. After 5 h the mixture was partitioned between EtOAc
and saturated aqueous NH4Cl. The aqueous phase was extracted
with, and the combined organic phases were dried and concen-
trated. Flash column chromatography (toluene/EtOH, 10:1) of
the residue gave 16 (1.63 g, 96%): [R]20 -49° (c 1.0, CHCl3);
D
1H NMR (CDCl3) δ 4.35 (d, 1 H, J ) 9.7 Hz, H-1), 4.05 (dd, 1 H,
J ) 4.9, 10.0 Hz, H-6), 3.89 (dd, 1 H, J ) 7.0, 10.0 Hz, H-6),
3.71 (s, 1 H, OH), 3.64 (t, 1 H, J ) 8.8 Hz, H-4), 3.61 (t, 1 H, J
) 8.7 Hz, H-3), 3.44 (ddd, 1 H, J ) 4.9, 7.0, 8.8 Hz, H-5), 3.41
(bt, 1 H, J ) 8.9 Hz, H-2), 3.08 (s, 1 H, OH), 2.74 (dq, 1 H, J )
7.5, 12.6 Hz, SCH2CH3), 2.70 (dq, 1 H, J ) 7.4, 12.7 Hz, SCH2-
CH3), 2.65 (s, 1 H, OH), 1.30 (t, 3H, J ) 7.4 Hz, SCH2CH3), 1.17-
1.04 (m, 21 H, iPr); 13C NMR (CDCl3) δ 85.7, 77.7, 77.5, 73.7,
72.1, 65.8, 24.3, 17.9, 15.4, 11.8; HRMS (FAB) calcd for C17H36O5-
SSiNa 403.1950 (M + Na+), found 403.1965. Anal. Calcd for
(5R)-Nr-(F lu or en -9-ylm et h oxyca r b on yl)-NE-b en zyloxy-
ca r bon yl-5-h yd r oxy-L-lysin e Allyl Ester (11). Compound 11
was prepared from (5R)-5-hydroxy-L-lysine dihydrochloride mono-
hydrate (10), benzyl chloroformate (1.6 equiv), 9-fluorenylmethyl
chloroformate (1 equiv), and allyl bromide (5 equiv) as described
for (5R)-NR-(fluoren-9-ylmethoxycarbonyl)-5-hydroxy-L-lysine ben-
zyl ester.2c After purification by flash column chromatography
(heptane/tert-butyl methyl ether/EtOH, 7:3:1) 11 was obtained
in 37% overall yield: [R]20D -2° (c 2.0, CHCl3); 1H NMR (CDCl3)
δ 5.90 (ddt, 1 H, J ) 5.8, 10.7, 17.0 Hz, OCH2CHCH2), 5.59 (d,
1 H, J ) 7.1 Hz, NHR), 5.33 (bd, 1 H, J ) 17.2 Hz, OCH2CHCH2),
5.19 (bs, 1 H, NHꢀ), 5.26 (dd, 1 H, J ) 1.0, 10.2 Hz, OCH2-
CHCH2), 5.11 (ABd, 1 H, J ) 12.8 Hz, PhCH2O), 5.08 (ABd, 1
H, J ) 12.8 Hz, PhCH2O), 4.64 (d, 2 H, J ) 5.5 Hz, OCH2-
CHCH2), 4.46-4.39 (m, 1 H, HR), 4.44 (ABdd, 1 H, J ) 7.1, 10.0
Hz, FmocCH2), 4.38 (ABdd, 1 H, J ) 6.8, 10.3 Hz, FmocCH2),
4.21 (t, J ) 6.9 Hz, 1 H, FmocCH), 3.75 (bs, 1 H, Hδ), 3.39-3.31
(m, 1 H, Hꢀ), 3.13-3.05 (m, 1 H, Hꢀ), 2.84 (bs, 1 H, OH), 2.09-
2.00 (m, 1 H, Hâ), 1.87-1.73 (m, 1 H, Hâ), 1.59-1.47 (m, 2 H,
Hγ), 1.44 (s, 9 H, tBu); 13C NMR (CDCl3) δ 172.0, 157.2, 156.2,
143.8, 143.7, 141.3, 136.3, 131.4, 128.5, 128.2, 128.1, 127.7, 127.1,
125.0, 120.0, 120.0, 119.2, 70.8, 67.1, 67.0, 66.1, 53.5, 47.1, 46.9,
30.0, 29.2; HRMS (FAB) calcd for C32H35N2O7 559.2444 (M +
H+), found 559.2421.
C
17H36O5SSi: C, 53.6; H, 9.5. Found: C, 53.4; H, 9.6.
Eth yl 6-O-Tr iisop r op ylsilyl-2,3,4-tr i-O-(4-m eth oxyben -
zyl)-1-th io-â-D-glu cop yr a n osid e (6). Sodium hydride (473 mg,
60% in mineral oil, 11.8 mmol) was added to a solution of 16
(1.00 g, 2.63 mmol) and 4-methoxybenzyl chloride (2.14 mL, 15.8
mmol) in DMF (10 mL) at 0 °C. The mixture was stirred at 0 °C
for 15 min and then at room temperature for a further 32 h.
MeOH (5 mL) was then added, and the mixture was partitioned
between toluene and saturated aqueous NH4Cl. The organic
phase was washed with saturated aqueous NaCl and water,
dried, and concentrated. Flash column chromatography (toluene/
EtOAc, 30:1 and heptane/EtOAc, 3:1) of the residue gave 6 (1.45
g, 74%): [R]20 4° (c 4.0, CHCl3); 1H NMR (CDCl3) δ 4.85 (ABd,
D
1 H, J ) 10.4 Hz, MeOPhCH2O), 4.83 (d, 1 H, J ) 9.5 Hz,
MeOPhCH2O), 4.80 (ABd, 1 H, J ) 10.9 Hz, MeOPhCH2O), 4.78
(d, 1 H, J ) 10.5 Hz, MeOPhCH2O), 4.68 (d, 1 H, J ) 9.9 Hz,
MeOPhCH2O), 4.63 (d, 1 H, J ) 10.5 Hz, MeOPhCH2O), 4.43
(d, 1 H, J ) 9.7 Hz, H-1), 3.94 (dd, 1 H, J ) 1.7, 11.2 Hz, H-6),
3.85 (dd, 1 H, J ) 4.5, 11.2 Hz, H-6), 3.81, 3.80, and 3.80 (3 s,
each 3 H, OCH3), 3.64 (t, 1 H, J ) 9.1 Hz, H-3), 3.60 (t, 1 H, J
) 9.1 Hz, H-4), 3.38 (dd, 1 H, J ) 8.7, 9.7 Hz, H-2), 3.27 (ddd,
1 H, J ) 1.7, 4.4, 9.3 Hz, H-5), 2.78 (dq, 1 H, J ) 7.4, 12.5 Hz,
SCH2CH3), 2.68 (dq, 1 H, J ) 7.5, 12.5 Hz, SCH2CH3), 1.29 (t, 3
H, J ) 7.4 Hz, SCH2CH3), 1.15-1.04 (m, 21 H, iPr); 13C NMR
(CDCl3) δ 159.3, 159.3, 159.2, 130.8, 130.5, 130.4, 129.9, 129.6,
129.5, 113.9, 113.8, 86.5, 84.3, 81.7, 80.3, 77.3, 75.5, 75.1, 74.6,
62.6, 55.3, 55.2, 24.1, 18.0, 18.0, 15.0, 12.0; HRMS (FAB) calcd
for C41H60O8SSiNa 763.3676 (M + Na+), found 763.3658.
(5R)-Nr-(F lu or en -9-ylm et h oxyca r b on yl)-NE-b en zyloxy-
ca r bon yl-5-O-{6-O-ter t-bu tyld ip h en ylsilyl-3,4-O-isop r op yl-
id en e-2-O-[6-O-tr iisop r op ylsilyl-2,3,4-tr i-O-(4-m eth oxyben -
zyl)-r-D-glu cop yr a n osyl]-â-D-ga la ctop yr a n osyl}-5-h yd r oxy-
L-lysin e Allyl Ester (17). A mixture of 6 (52 mg, 70 µmol), 13
(58 mg, 58 µmol), and powdered molecular sieves (4 Å, 150 mg)
in CH2Cl2 (2 mL) was stirred at room temperature for 15 min.
N-Iodosuccinimide (18 mg, 70 µmol) was added, and the mixture
was cooled to -45 °C and protected from light. Silver trifluo-
romethanesulfonate (7 mg, 28 µmol) was added, the reaction
mixture was stirred for 80 min at -45 °C, and the reaction was
then quenched by addition of triethylamine (41 µL, 0.29 mmol).
After 5 min, the mixture was diluted with CH2Cl2, filtered (Hyflo
Supercel), and washed with 10% aqueous Na2S2O3 and saturated
aqueous NaHCO3. The organic layer was dried, concentrated,
and subjected to flash column chromatography (toluene/EtOAc,
8:1) to give 17 and the corresponding â-isomer (78 mg, R/â )
3.3:1, ∼80%). Purification of the mixture by normal-phase HPLC
(linear gradient 0% f 8% tert-butyl methyl ether in CH2Cl2
(5R)-Nr-(F lu or en -9-ylm et h oxyca r b on yl)-NE-b en zyloxy-
ca r bon yl-5-O-(6-O-ter t-bu tyld ip h en ylsilyl-3,4-O-isop r op yl-
id en e-â-D-ga la ctop yr a n osyl)-5-h yd r oxy-L-lysin e Allyl Ester
(13). A solution of 11 (305 mg, 0.546 mmol) in THF (3 mL) and
crushed molecular sieves (AW-300, 200 mg) was added to freshly
prepared 1,2-anhydro-6-O-tert-butyldiphenylsilyl-3,4-O-isopro-
pylidene-R-D-galactopyranoside8 (12, 0.273 mmol), and the mix-
ture was stirred for 20 min at room temperature and then cooled
to -50 °C. Zinc chloride (300 µL, 1.0 M in Et2O, 0.300 mmol)
was added, and the reaction mixture was allowed to attain room
temperature over 20 h. The mixture was then diluted with
EtOAc, filtered (Hyflo-Supercel), and washed with water. The
aqueous phase was extracted twice with EtOAc, and the
combined organic phases were dried and concentrated. Flash
column chromatography (toluene/EtOAc, 7:3 f 1:1) followed by
purification by normal-phase HPLC (linear gradient 0% f 20%
tert-butyl methyl ether in CH2Cl2 during 160 min) gave 13 (81
mg, 30%), the corresponding R-anomer (30 mg, 7%), and unre-
acted acceptor 11 contaminated with the corresponding lactone
(182 mg). Da ta for 13: [R]20 +9° (c 1.0, CHCl3); 1H NMR
D
(CDCl3) δ 5.91 (ddt, 1 H, J ) 5.7, 10.6, 17.2 Hz, OCH2CHCH2),
5.67 (bt, 1 H, J ) 5.2 Hz, NHꢀ), 5.62 (d, J ) 7.5 Hz, 1 H, NHR),
5.34 (d, 1 H, J ) 17.2 Hz, OCH2CHCH2), 5.27 (d, 1 H, J ) 10.3
Hz, OCH2CHCH2), 5.00 (ABd, 1 H, J ) 12.3 Hz, PhCH2O), 4.87
(ABd, 1 H, J ) 12.2 Hz, PhCH2O), 4.65 (bd, 2 H, J ) 5.6 Hz,
OCH2CHCH2), 4.44 (ABdd, 1 H, J ) 7.0, 10.6 Hz, FmocCH2),
4.43-4.37 (m, 1 H, HR), 4.37 (ABdd, 1 H, J ) 6.9, 10.4 Hz,
FmocCH2), 4.21 (t, 1 H, J ) 7.1 Hz, FmocCH), 4.20 (bd, 1 H, J
) 5.5 Hz, H-4), 4.18 (d, 1 H, J ) 8.3 Hz, H-1), 4.02 (dd, 1 H, J
) 5.6, 7.0 Hz, H-3), 3.94-3.91 (m, 2 H, H-6), 3.89-3.84 (m, 1 H,
H-5), 3.70 (bs, 1 H, Hδ), 3.52 (dt, 1 H, J ) 3.0, 7.6 Hz, H-2),
3.42-3.36 (m, 1 H, Hꢀ), 3.31 (d, 1 H, J ) 2.9 Hz, OH), 3.22 (dt,
1 H, J ) 5.6, 14.3 Hz, Hꢀ), 2.03-1.84 (m, 2 H, Hâ), 1.71-1.55
(m, 2 H, Hγ), 1.48 and 1.32 (2 s, each 3 H, CH3), 1.32 (s, 9 H,
tBu); 13C NMR (CDCl3) δ 171.8, 156.8, 156.0, 143.8, 143.7, 141.2,
136.6, 135.6, 135.5, 133.1, 133.0, 131.4, 129.8, 128.4, 128.0, 127.9,
127.8, 127.7, 127.7, 127.1, 125.1, 120.0, 120.0, 119.3, 110.1, 102.9,
80.0, 78.9, 73.6, 73.5, 73.0, 67.0, 66.4, 66.2, 62.6, 53.5, 47.1, 44.8,
during 160 min) gave 17 (46 mg, 47%): [R]20 +28° (c 1.0,
D
CHCl3); 1H NMR (CDCl3) δ 5.85 (ddt, 1 H, J ) 5.5, 10.7, 17.2
Hz, OCH2CHCH2), 5.65 (bs, 1 H, NHꢀ), 5.64 (d, 1 H, J ) 7.2 Hz,
NHR), 5.28 (bd, 1 H, J ) 17.2 Hz, OCH2CHCH2), 5.22 (d, 1 H, J
) 3.5 Hz, H-1′), 5.20 (dd, 1 H, J ) 1.0, 10.5 Hz, OCH2CHCH2),
4.98 (bs, 2 H, PhCH2O), 4.81 (d, 2 H, J ) 9.9 Hz, MeOPhCH2O),
4.76 (ABd, 1 H, J ) 10.5 Hz, MeOPhCH2O), 4.68 (d, 1 H, J )
10.2 Hz, MeOPhCH2O), 4.67 (bs, 2 H, MeOPhCH2O), 4.57 (bd,
2 H, J ) 5.3 Hz, OCH2CHCH2), 4.46 (d, 1 H, J ) 7.8 Hz, H-1),