COMMUNICATIONS
[11] N. S. Hush, J. R. Reimers, L. E. Hall, L. A. Johnston, M. J. Crossley,
Ann. N. Y. Acad. Sci. 1998, 852, 1.
transitions red-shift relative to the B band of the monomer. The same
situation occurs for the meso ± b and the meso ± meso bis-porphyrins of
ref. [16b) ]. These red shifts indicate that the exciton coupling in
porphyrins linked by a single bond is augmented by other factors; one
likely factor is electronic coupling between porphyrin subunits across
the C C bond.
[12] a) C. C. Mak, D. Pomeranc, M. Montalti, L. Prodi, J. K. M. Sanders,
Chem. Commun. 1999, 1083; b) S. L. Darling, C. C. Mak, N. Bampos,
N. Feeder, S. J. Teat, J. K. M. Sanders, New. J. Chem. 1999, 23, 359;
c) S. Anderson, H. L. Anderson, A. Bashall, M. McPartlin, J. K. M.
Sanders, Angew. Chem. 1995, 107, 1196; Angew. Chem. Int. Ed. Engl.
1995, 34, 1096.
[30] 3b ± e: 3b, 91% yield. UV/Vis (CH2Cl2): lmax 402, 530, 570 nm;
1H NMR (300 Hz, CDCl3, 258C): d 1.73 (m, 9H; CH3), 3.39, 3.41,
3.50, 3.64 (s, 3H each; CH3), 3.86 (m, 6H; CH2), 7.70 ± 8.22 (m, 5H;
Ar H), 9.41, 9.53, 9.74, 9.84 (s, 1H each; meso-H); FAB HRMS for
C36H36N4Zn: calcd: 588.2223; found: 588.2230. 3c, 93% yield. UV/Vis
(CH2Cl2): lmax 402, 533, 569 nm; 1H NMR (300 Hz, CDCl3, 258C):
d 1.75 (m, 9H; CH3), 2.72 (s, 3H; CH3), 3.39 (s, 6H; CH3), 3.44, 3.66
(s, 3H each; CH3), 3.86 (m, 6H; CH2), 7.68, 8.08 (dd, 3J(H,H)
14.5 Hz, 2H; Ar H), 9.40, 9.50, 9.73, 9.84 (s, 1H each; meso-H);
FAB HRMS for C37H36N4OZn: calcd: 602.23879; found: 602.23908.
3d, 88% yield. UV/Vis (CH2Cl2): lmax 404, 534, 570 nm; 1H NMR
(300 MHz, CDCl3, 258C): d 1.74 (t, 3J(H,H) 7.5 Hz, 3H; CH3),
1.85 (t, 3J(H,H) 7.3 Hz, 3H; CH3), 1.92 (t, 3J(H,H) 7.5 Hz, 3H;
CH3), 3.07, 3.41, 3.56, 3.65 (s, 3H each; CH3), 4.08 (m, 6H; CH2), 7.17
[13] K. Susumu, T. Shimidzu, K. Tanaka, H. Segawa, Tetrahedron Lett.
1996, 37, 8399.
[14] R. G. Khoury, L. Jaquinod, K. M. Smith, Chem. Commun. 1997, 1057.
[15] M. O. Senge, X. D. Feng, Tetrahedron Lett. 1999, 40, 4165.
[16] a) A. Osuka, H. Shimidzu, Angew. Chem. 1997, 109, 93; Angew. Chem.
Int. Ed. Engl. 1997, 36, 135; b) T. Ogawa, Y. Nishimoto, N. Yoshida, N.
Ono, A. Osuka, Angew. Chem. 1999, 111, 140; Angew. Chem. Int. Ed.
1999, 38, 176.
[17] J. B. Paine, III, D. Dolphin, Can. J. Chem. 1978, 56, 1710.
[18] T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 1995, 60, 7508.
[19] Compound 1 was obtained as a minor product in the standard
etioporphyrin I synthesis. Apparently an ethyl group was replaced by
bromine during the formation of the dipyrrylmethene precursor under
harsh bromination conditions. Being less basic, 1 can be separated
from etioporphyrin by acid extractions, for example, 20 g of 1 from
3 kg of etioporphyrin. Other Heck reactions with homologous b-
bromoporphyrins have been reported, see H. Ali, J. E. van Lier,
Tetrahedron 1994, 50, 11933.
3
(m, 2H; Ar H), 7.53 (m, 2H; Ar H), 7.81 (d, J(H,H) 8.8 Hz, 2H;
Ar H), 8.30 (d, 3J(H,H) 8.9 Hz, 2H; Ar H), 8.86 (s, 1H; Ar H),
9.48, 10.00, 10.06, 10.34 (s, 1H each, meso-H); FAB HRMS for
C44H40N4Zn: calcd: 688.25444; found: 688.25432. 3e, 82% yield. UV/
Vis (CH2Cl2): lmax 406, 533, 574 nm; 1H NMR (300 MHz, CDCl3,
258C): d 1.72 (m, 9H; CH3), 3.36 (s, 3H; CH3), 3.40 (s, 6H; CH3),
3.59 (s, 3H; CH3), 3.84 (m, 6H; CH2), 8.34 (dd, 3J(H,H) 14.9 Hz,
2H; Ar H), 9.43, 9.50 (s, 1H each; meso-H), 9.62 (s, 2H; meso-H),
10.35 (s, 1H; CHO); FAB HRMS for C37H36N4OZn: calcd: 616.21806;
found: 616.21786.
[20] M. Murata, S. Watanabe, Y. Masuda, J. Org. Chem. 1997, 62, 6458.
[21] 2: 76% yield. UV/Vis (CH2Cl2): lmax 401, 533, 574 nm; 1H NMR
(300 Hz, CDCl3, 258C): d 1.78 (s, 12H; CH3), 1.80 (m, 9H; CH3),
3.44, 3.50, 3.64, 3.96 (s, 3H each; CH3), 3.98 (m, 6H; CH2), 9.60, 9.64,
9.90, 10.76 (s, 1H each; meso-H); FAB HRMS for C36H43BN4O2Zn:
calcd: 638.27712; found: 638.27705.
[31] S. G. DiMagno, V. S.-Y. Lin, M. J. Therien, J. Org. Chem. 1993, 58,
5983.
[22] A. G. Hyslop, M. A. Kellett, P. M. Iovine, M. J. Therien, J. Am. Chem.
Soc. 1998, 120, 12676.
[32] X. Zhou, M. K. Tse, T. S. M. Wan, K. S. Chan, J. Org. Chem. 1996, 61,
3590.
[33] a) Y. Q. Deng, J. A. Roberts, S. M. Peng, C. K. Chang, D. G. Nocera,
Angew. Chem. 1997, 109, 2216; Angew. Chem. Int. Ed. Engl. 1997, 36,
[23] 3a: 62% yield. UV/Vis (CH2Cl2): lmax 403, 415, 534, 579 nm; 1H
3
(300 Hz, CDCl3, 258C): d 1.74 (t, J(H,H) 7.2 Hz, 6H; CH3), 1.90
(t, 3J(H,H) 7.2 Hz, 6H; CH3), 2.02 (t, 3J(H,H) 7.2 Hz, 6H; CH3),
2.88, 3.65, 3.74, 3.92 (s, 6H each; CH3), 4.20 (m, 12H; CH2), 10.06,
10.14, 10.22, 10.50 (s, 2H each; meso-H); FAB HRMS for
C60H62N8Zn2: calcd: 1022.36804; found: 1022.36765; elemental anal-
ysis (%) for C60H62N8Zn: calcd: C 70.24, H 6.09, N 10.92; found: C
70.32, H 6.12, N 11.03.
2124; b) C. Turro, C. K. Chang, G. E. Leroi, R. I. Cukier, D. G.
Â
Nocera, J. Am. Chem. Soc. 1992, 114, 4013.
[34] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
[24] Crystallographic data: C63H74N8O3Zn2 from CH3OH/CH2Cl2, Mr
1122.04, monoclinic, space group C2/c, a 14.58560(10), b
21.5321(3), c 19.6353(3) , b 104.5520(10)8, V 5968.81(13) 3,
Z 4, 1calcd 1.249 gcm 3, F(000) 2368, l(MoKa) 0.7107 , crystal
dimensions 0.5 Â 0.25 Â 0.10 mm3. A total of 8840 reflections were
collected at 908C using a Siemens diffractometer equipped with a
CCD detector in the q range of 1.72 to 20.008, of which 2788 were
unique (Rint 0.0570). The structure was solved by the Patterson
heavy atom method in conjunction with standard difference Fourier
techniques. Hydrogen atoms were placed in calculated positions using
a standard riding model and were refined isotropically. A methanol
solvent molecule was found to be disordered and was modeled by
standard procedures. The largest peak and hole in the difference map
were 0.957 and 0.424 e 3, respectively. The least-squares refine-
ment converged normally giving residuals of R 0.0749 and wR2
0.1983. Crystallographic data (excluding structure factors) for the
structure reported in this paper have been deposited with the
Cambridge Crystallographic Data Centre as supplementary publica-
tion no. CCDC-133672. Copies of the data can be obtained free of
charge on application to CCDC, 12 Union Road, Cambridge
CB21EZ, UK (fax: (44)1223-336-033; e-mail: deposit@ccdc.cam.
ac.uk).
One-Pot Synthesis of Antigen-Bearing,
Lysine-Based Cluster Mannosides
Using Two Orthogonal Chemoselective
Ligation Reactions**
Cyrille Grandjean,* Corinne Rommens,
 Á
Helene Gras-Masse, and Oleg Melnyk*
Dendritic cells (DCs) are well-recognized for playing a
crucial role in the control of immunity. These professional
antigen-presenting cells act both as initiators and modulators
[*] Dr. C. Grandjean, Dr. O. Melnyk, C. Rommens, Prof. H. Gras-Masse
Á
Â
Laboratoire de Synthese, Structure et Fonction des Biomolecules
Â
UMR 8525 CNRS Universite de Lille II
Institut de Biologie et Institut Pasteur de Lille
Â
1 rue du Professeur Calmette BP447, 59021 Lille Cedex (France)
[25] W. R. Scheidt, M. E. Kastner, K. Hatano, Inorg. Chem. 1978, 3, 706.
[26] K. M. Barkigia, M. D. Berber, J. Fajer, C. J. Medforth, M. W. Renner,
K. M. Smith, J. Am. Chem. Soc. 1990, 112, 8851.
Fax: (33)3-20-87-12-33
[27] X. Zhou, Z. Y. Zhou, T. C. W. Mak, K. S. Chan, J. Chem. Soc. Perkin
Trans. 1 1994, 2519.
[**] This work was financially supported by the ANRS and the Fondation
Â
pour la Recherche Medicale (Sidaction grant to CG). We are grateful
[28] B. Krattinger, D. J. Nurco, K. M. Smith, Chem. Commun. 1998, 757.
[29] Standard exciton considerations predict that By should blue-shift and
Bx should red-shift about the unperturbed B band. In 3a, both
to B. Coddeville and G. Montagne for recording ES-MS and NMR
spectra, respectively, and also to Dr. S. Brooks for proofreading the
manuscript.
1068
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
0570-0833/00/3906-1068 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2000, 39, No. 6