1,3-Dipolar Cycloadditions, 116
FULL PAPER
[3]
[4]
[5]
[6]
[7]
[8]
furnished k1 ϭ 3.14 10Ϫ4 sϪ1. The unstable colorless dimer 33b was
isolated. Ϫ 1H NMR: δ ϭ 2.77Ϫ3.35 (symmetric AAЈBBЈ, 5-H2/6-
H2), 3.68, 3.77 (2 s, 4 OCH3), 6.07Ϫ7.53 (m, 16 arom. H). Ϫ
C32H32O4S2 (544.7): calcd. C 70.56, H 5.92; found C 71.18, H 5.80.
E. Bergmann, M. Magat, D. Wagenberg, Ber. Dtsch. Chem.
Ges. 1930, 63, 2576Ϫ2584.
A. Schönberg, D. Cernik, W. Urban, Ber. Dtsch. Chem. Ges.
1931, 64, 2577Ϫ2581.
A. Schönberg, S. Nickel, D. Cernik, Ber. Dtsch. Chem. Ges.
1932, 65, 289Ϫ293.
Last papers: A. Schönberg, W. Knöfel, E. Frese, K. Praefcke,
Chem. Ber. 1970, 103, 938Ϫ948, 949Ϫ959.
A. Schönberg, B. König, E. Singer, Chem. Ber. 1967, 100,
767Ϫ777.
Original German text: "Leider waren alle Versuche, dem Che-
mismus der Reaktionen (3) und (4) durch Isolierung von Zwi-
schenprodukten oder auf andere Weise näher zu kommen, bis-
her erfolglos."
I. Kalwinsch, X. Li, J. Gottstein, R. Huisgen, J. Am. Chem.
Soc. 1981, 103, 7032Ϫ7033.
A personal note may be added. In a letter (1982) to the senior
author, Alexander Schönberg accepted the term "Schönberg
Reaction" and the solution of a vexing problem with pleasure.
Schönberg, a pioneer of thione chemistry, deceased in 1985 in
his 93rd year.
(b): When the same reaction was carried out in ether at Ϫ78 °C
overnight, the 2,5-dihydro-2,2-bis(4-methoxyphenyl)-1,3,4-thiadi-
azole (32b) deposited in crystals which were suction-filtered. On
warming, decomposition occurred Ͻ 0 °C.
4,4,5,5-Tetrakis(4-methoxyphenyl)-1,3-dithiolane (34a). ؊ (a): The
reaction of 2.58 g (10.0 mmol) of 31b in 50 mL of ether with ether-
eal diazomethane at room temp. required 20Ϫ30 min for the disap-
pearance of the blue color, and some drops of acetic acid removed
the yellow color of the excess of diazomethane. 34a was obtained
in colorless crystals (2.60 g, 93%), m.p. 161Ϫ162 °C (cyclohexane/
benzene); ref.[3]: 49% yield, m.p. 161Ϫ162 °C. Ϫ 1H NMR: δ ϭ
3.66 (s, 2-H2), 3.75 (s, 4 OCH3), 6.58, 7.53 (AAЈBBЈ of 16 arom.
H). Ϫ (b): Hydrogenolysis of 34a was achieved by Raney nickel in
refluxing methanol, as described above for 4. Tetrakis(4-methoxy-
phenyl)ethylene (37b) was obtained in 94% yield, m.p. 185Ϫ186.5
[9]
[10]
[11]
[12]
R. Huisgen, G. Mloston, Polish J. Chem., 1999, 73, 635Ϫ644.
DMAD is a popular choice for an active dipolarophile. It
turned out that 9 combined with thiobenzophenone 3400 times
faster than with DMAD; see R. Huisgen, X. Li, Tetrahedron
Lett. 1983, 24, 4185Ϫ4188.
J. Geittner, Ph. D. Thesis, Univ. of Munich, 1974; pp 144Ϫ145;
J. Geittner, R. Huisgen, R. Sustmann, Tetrahedron Lett. 1977,
18, 881Ϫ884.
L. Fisera, R. Huisgen, I. Kalwinsch, E. Langhals, X. Li, G.
Mloston, K. Polborn, J. Rapp, W. Sicking, R. Sustmann, Pure
Appl. Chem. 1996, 68, 789Ϫ798.
R. Huisgen, E. Langhals, Tetrahedron Lett. 1989, 30,
5369Ϫ5372.
K. N. Zelenin, V. V. Alekseev, V. A. Khrustalev, Zh. Org. Khim.
1984, 20, 169Ϫ180; Engl. Transl.: Russ. J. Org. Chem. 1984,
20, 152Ϫ162.
H. Fritz, P. Hug, H. Sauter, T. Winkler, S.-O. Lawesson, B. S.
Pedersen, S. Scheibye, Org. Magn. Res. 1981, 16, 31Ϫ43.
K. H. Mayer, D. Lauerer, Liebigs Ann. Chem. 1970, 731,
142Ϫ151. K. N. Zelenin, V. A. Khrustalev, V. V. Pinson, V. V.
Alekseev, Zh. Org. Khim. 1980, 16, 2237Ϫ2238; C.A. 1980, 94,
103 258k. D. M. Evans, D. R. Taylor, J.C.S., Chem. Commun.
1982, 188Ϫ189.
1
°C[3] after recrystallization from toluene. Ϫ H NMR: δ ϭ 3.70 (s,
4 OCH3), 6.5Ϫ7.1 (AAЈBBЈ, 16 arom. H). Ϫ C30H28O4 (452.5):
calcd. C 79.62, H 6.24; found C 79.61, H 6.27.
[13]
[14]
4,4Ј-Dichlorothiobenzophenone S-Methylide (35c)
2,2,3,3-Tetrakis(4-chlorophenyl)-1,4-dithiane (33c):[41] 1.06 (3.97
mmol) of 4,4Ј-dichlorothiobenzophenone (31c)[35,42] in 10 mL of
THF was cooled to Ϫ78 °C and stirred; 3.5 mL of 1.14 diazo-
methane in THF was added within 10 min. The color turned from
blue to light-yellow, and some colorless 32c deposited. The mixture
was removed from the cold bath and diluted with 200 mL of pent-
ane (20 °C). After the N2 evolution was finished, the solvent was
evaporated and the crystalline residue triturated with 15 mL of
methanol: 920 mg (82%) of 33c; recrystallized from CHCl3/pent-
[15]
[16]
[17]
[18]
1
ane, the m.p. was 154Ϫ156 °C (dec.). Ϫ H NMR: δ ϭ 2.84Ϫ3.30
(AAЈBBЈ, 5-H2/6-H2), 6.88Ϫ7.45 (m, 16 arom. H). Ϫ 13C NMR:
δ ϭ 31.2 (t, C-5/6), 63.1 (s, C-2/3), 125.7, 127.0, 132.9, 135.6 (4 d,
2 ϫ 8 arom. CH), 132.7, 133.4, 142.3, 143.9 (4 s, 2 ϫ 4 arom. Cq).
Ϫ MS (120 °C): m/z of most populous isotope peak (%): 562 (1)
[Mϩ], 470 (5) [C26H16Cl4ϩ; the intensities of the six isotope peaks
correspond to natural abundances], 266 (100) [31cϩ], 231 (63) [31cϩ
Ϫ Cl], 155 (33) [ClC6H4ϪCϵSϩ]. Ϫ C28H20Cl4S2 (562.4): calcd. C
59.79, H 3.58, S 11.40; found C 59.63, H 3.72, S 11.38.
[19]
G. Mloston and R. Huisgen, Tetrahedron, to be submitted.
[20] [20a]
R. Hoffmann, R. B. Woodward, J. Am. Chem. Soc. 1965,
87, 2046Ϫ2048. Ϫ [20b] R. B. Woodward, R. Hoffmann, J. Am.
Chem. Soc. 1965, 87, 395Ϫ397.
[21]
[22]
Discussion and review: R. Huisgen in 1,3-Dipolar Cycloaddi-
tion Chemistry (Ed.: A. Padwa), J. Wiley, New York, 1984, vol
1, pp 93Ϫ98.
R. Huisgen, X. Li, G. Mloston, C. Fulka, Eur. J. Org. Chem.
following paper.
[23]
[24]
X. Li, R. Huisgen, Tetrahedron Lett. 1983, 24, 4181Ϫ4184.
Acknowledgments
For example: S. Tamagaki, S. Oae, Tetrahedron Lett. 1972, 13,
1159Ϫ1162. P. Gronski, K. Hartke, Tetrahedron Lett. 1976, 17,
4139Ϫ4142; P. Gronski, K. Hartke, H. Burzlaff, R. Böhme, A.
Shaukat, Chem. Ber. 1977, 110, 3689Ϫ3702; K. Nakasuji, K.
Nishino, I. Murata, H. Ogoshi, Z. Yoshida, Angew. Chem. Int.
Ed. Engl. 1977, 16, 866.
D. H. R. Barton, F. S. Guziec, I. Shahak, J. Chem. Soc., Perkin
I 1974, 1794Ϫ1799.
R. Sustmann, Pure Appl. Chem., 1974, 40, 569Ϫ593.
R. E. Marsh, Acta Cryst. 1955, 8, 91Ϫ94.
M. Kägi, A. Linden, H. Heimgartner, G. Mloston, Helv. Chim.
Acta 1993, 76, 1715Ϫ1728.
G. Mloston, J. Romanski, E. B. Rusanov, A. N. Tshernega, Y.
G. Shermolowich, Zhur. Org. Khim., 1995, 31, 1027Ϫ1030;
Engl. transl.: Russ. J. Org. Chem. 1995, 31, 952Ϫ955.
H. Friebolin, S. Kabuss, W. Maier, A. Lüttringhaus, Tetrahed-
ron Lett. 1962, 3, 683Ϫ690.
G. Claeson, G. M. Androes, M. Calvin, J. Am. Chem. Soc.
1960, 82, 4428Ϫ4429.
We express our thanks to the Fonds der Chemischen Industrie,
Frankfurt, for the kind support of our research. I.K. thanks the
Deutsche Forschungsgemeinschaft for a stipend, X. L. and G. M.
are obliged to the Alexander von Humboldt Foundation for fellow-
ships. Our thanks are going to Dr. David S. Stephenson for the
[25]
1
[26]
[27]
[28]
computer simulation of an H NMR spectrum. We are grateful to
cand. chem. Jörg Gottstein for help in the experiments. We thank
Helmut Huber for many NMR spectra and Reinhard Seidl for the
MS. Helmut Schulz and Magdalena Schwarz took care of the ele-
mental analyses.
[29]
[30]
[31]
[32]
[1]
H. Staudinger, J. Siegwart, Helv. Chim. Acta 1920, 3,
833Ϫ840, 840Ϫ852.
[2]
A. Schönberg, L. Vargha, Liebigs Ann. Chem. 1930, 483,
176Ϫ189; Ber. Dtsch. Chem. Ges. 1931, 64, 1390Ϫ1399; A.
Schönberg, S. Nickel, ibid. 1931, 64, 2323Ϫ2327.
J. E. Anderson, D. R. Davis, J. D. Roberts, J. Org. Chem. 1970,
35, 1195Ϫ1196.
Eur. J. Org. Chem. 2000, 1685Ϫ1694
1693