C. Morin, L. Ogier / Tetrahedron: Asymmetry 11 (2000) 629–638
637
1.4 (s, 3H, C(CH3)2), 1.25 (s, 3H, C(CH3)2), 0.9 (s, 9H, Si-C(CH3)3), 0.1, −0.15 (2*s, 2*3H, Si-(CH3)2).
13C NMR (50 MHz, CDCl3) δ 141.6 (Phipso), 137.2 (Phmeta), 128.2 (Phortho), 111.3 (C(CH3)2), 105.0 (C-
1), 93.0 (C-I), 85.0, 79.5, 75.0, 73.9, 73.0 (C-2 to C-6), 26.6, 26.0 (C(CH3)2), 25.8 (Si-C(CH3)3), 18.1
(Si-C(CH3)3), −4.6, −5.1 (Si-(CH3)2). Anal. calcd for C21H33IO6Si: C, 47.02; H, 6.20; I, 23.65. Found:
C, 46.83; H, 6.08.; I, 23.83.
4.13. 6-C-(4-Iodophenyl)-L-glycero-α,β-D-gluco-hexopyranose 3
Dichloromethane (4.5 mL) and water ( 0.5 mL) were added to 21 (210 mg, 0.39 mmol) and the biphasic
mixture was stirred efficiently. Trifluoroacetic acid was added and when deprotection was complete (tlc),
the volatiles were removed. Co-evaporation with toluene was performed and the residue dissolved in
water (20 mL). The aqueous layer was washed with dichloromethane and evaporated. The residue was
21
D
recrystallised from ethanol to afford 3 (97 mg, 65%) as white crystals. M.p.=158–159°C. [α] =+29.5 (c
0.38, CH3OH) 5 min→+32°C (24 h). 1H NMR (250 MHz, D2O) δ 7.55–7.05 (AA0XX0 system, Japp.=8
Hz, 4 H, Ar), 5.0 (d, J1–2=3.2 Hz, H-1α), 4.9–4.75 (M, H-6α, H-6β), 4.25 (d, J1–2=8 Hz, 1H, H-1β),
3.85–3.1 (m, other Hs). 13C NMR (62.5 MHz, D2O+(CD3)2C_O) δ 140.7, 140.4 (Phipso α+β), 136.8
(Phmeta α+β), 128.0, 127.7 (Phortho α+β), 95.7 (C-1β), 92.8, 92.4 (Phpara α+β), 91.6 (C-1α), 77.5, 75.3,
73.7, 73.2, 72.5, 71.0, 69.4, 69.2, 69.1, 68.9 (C-2α+β to C-6α+β). Anal. calcd for C12H15IO6: C, 37.72;
H, 3.96; I, 33.21. Found: C, 37.89; H, 3.93; I, 33.12.
References
1. For a review, see: Morin, C. Synthèse de sucres iodés; vers l’imagerie SPECT du transport du D-glucose. In
Radiopharmaceutiques, Chimie des traceurs et applications biologiques. Comet, M.; Vidal, M., Eds. Presse Universitaire de
Grenoble: France, 1998; pp. 295–305.
2. Hamant, S.; Mathieu, J.-P.; Morin, C.; Trimcev, I.; Vidal, M. Bioorg. Med. Chem. Lett. 1994, 4, 1687–1690; see also: Morin,
C.; Ogier, L. J. Carbohydr. Chem. 2000, 19, in press, and references cited therein.
3. 3-O-Methyl-D-glucose (3-OMG) is the reference tracer of glucose transport, see: Vyska, K.; Magloire, J. R.; Freundlieb,
C.; Höck, A.; Becker, A.; Schmid, A.; Feinendegen, L. E.; Kloster, G.; Stöcklin, G.; Schuier, F. J.; Thal, H. U. Eur. J. Nucl.
Med. 1985, 11, 97–106.
4. For 3-(3-iodoprop-2-en)-yl-D-glucose, see: Goodman, M. M.; Kabalka, G. W.; Waterhouse, R. N.; Daniel, G. B. J. Labelled
Compds Radiopharm. 1991, 30, 278–279. For 3-(2-iodoethyl)-D-glucose, see: Bignan, G. Morin, C.; Vidal, M. Carbohydr.
Res. 1993, 248, 371–375.
5. For 3-deoxy-3-iodo-D-glucose, see: Tsuya, A.; Shigematsu, A. Ger. Off. 2817336; see also: Kloster, G.; Laufer, P.; Wutz,
W.; Stöcklin, G. J. Labelled Compds Radiopharm. 1982, 19, 1626–1628.
6. Onodera, K.; Hirano, S.; Kashimura, N. Carbohydr. Res. 1968, 6, 276–285.
7. Shing, T. K. M.; Wong, C.-H.; Yip, T. Tetrahedron: Asymmetry 1996, 7, 1323–1340.
8. Imamoto, T.; Takeyama, T.; Koto, H. Tetrahedron Lett. 1986, 27, 3243–3246.
9. Tabuchi, T.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1986, 27, 3891–3894.
10. Peterson, D. J. J. Org. Chem. 1968, 33, 780–784.
11. Lankin, D. C.; David, C.; Nugent, S. T.; Rao, S. N. Carbohydr. Res. 1993, 244, 49–68.
12. Belluci, G.; Chiappe, C.; LoMoro, G. J. Org. Chem. 1995, 60, 6214–6217.
13. Ohta, H.; Sakata, Y.; Takeuchi, T.; Ishii, Y. Chem. Lett. 1990, 733–736.
14. Cambie, R. C.; Noall, W. I.; Potter, G. J.; Rutledge, P. S.; Woodgate, P. D. J. Chem. Soc., Perkin Trans. 1 1977, 226–230.
15. Izquierdo Cubero, I. Carbohydr. Res. 1983, 114, 311–316.
16. After completion of this work (Ogier, L. Thèse de Doctorat, Grenoble, 1998), an efficient preparation of epoxide 7 has been
disclosed: Soler, T.; Bachki, A.; Falvello, L. R.; Foubelo, F.; Yus, M. Tetrahedron: Asymmetry 1998, 9, 3939–3943.
17. Yoshimura, J.; Kobayashi, K.; Sato, K.-I.; Funabashi, M. Bull. Chem. Soc. Jpn. 1972, 45, 1806–1812.
18. The adverse beta effect of oxygen in such displacements has been discussed; see: Fleet, G. W. J. Chem. Brit. 1989, 25,
287–292. For advantages of betaiodoethers in radiolabelling see Ref. 2.