Asymmetric Synthesis of Isoquinoline Derivatives from Amino Acids
FULL PAPER
1H NMR (CDCl3): δ = 0.74 [d, J = 6.6 Hz, 3 H, CH(CH3)2], 0.89
(Car.), 134.1 (Car.), 134.2 (Car.), 145.1 (Car.), 168.8 (CO) ppm.
[d, J = 6.6 Hz, 3 H, CH(CH3)2], 1.42–1.65 [m, 2 H, CH-CH2- HRMS (EI): C25H24N2O3S: calcd. 432.1508; found 432.1502.
CH(CH3)2], 1.98–2.05 [m, 1 H, CH2-CH(CH3)2], 2.38 (s, 3 H, Car.
CH3), 4.09 (t, J = 6.2 Hz, 1 H, CH-CH2), 5.95 [s, 1 H, N-CH(-Car.
N], 6.14 (d, J = 7.4 Hz, 1 H, Car.-CH=CH), 6.57 (d, J = 7.4 Hz, 1
H, CH=CH-N), 7.06–7.73 (m, 8 H, CHar.) ppm. 13C NMR
(CDCl3): δ = 21.7 (Car.-CH3), 22.4 [2 CH3, CH(CH3)2], 23.9 [CH-
CH2-CH(CH3)2], 43.4 [CH-CH2-CH(CH3)2], 60.1 [CH-CH2-
-
)
(2S,5S,10bR)-2-Benzyl-5-methyl-1-(p-tolylsulfonyl)-1,5,6,10b-tetra-
hydroimidazo[2,1-a]isoquinolin-3(2H)-one (6c): Yield: 99 %. M.p.
133 °C, Rf = 0.42 (CH2Cl2). Major Isomer: H NMR (CDCl3): δ =
1
0.95 (d, J = 6.5 Hz, 3 H, CH-CH3), 2.40 (s, 3 H, Car.-CH3), 2.41–
1
2
2.48 [dd, J = 4.7, J = 15.4 Hz, 1 H, trans-CH(H)-CH(-CH3)N],
2
2.66–2.71 [dd, = 5.0, J = 15.2 Hz, 1 H, cis-CH(H)-CH(-CH3)N],
CH(CH3)2], 72.4 [N-CH(-Car.)N], 116.1 (CH=CH-N), 121.2 (Car.
-
3.11 (d, J = 4.2 Hz, 2 H, CH-CH -Ph), 3.71–3.77 [m, 1 H, CH2-
2
CH=CH), 124.0 (CHar.), 125.4 (CHar.), 128.0 (2 CHar.), 128.8
(CHar.), 128.9 (CHar.), 130.2 (Car.), 130.5 (2 CHar.), 130.7 (Car.),
132.5 (Car.), 145.2 (Car.), 169.1 (CO) ppm. HRMS (+EI):
C22H24N2O3S: calcd. 396.1508; found 396.1494.
CH(-CH3)N], 4.21 (t, J = 4.2 Hz, 1 H, CH-CH2-Ph), 5.61 [s, 1 H,
N-CH(-Car.)N], 6.73–7.71 (m, 13 H, CHar.) ppm. 13C NMR
(CDCl3): δ = 17.4 (CH-CH3), 21.6 (Car.-CH3), 35.2 [Car.-CH2-CH(-
CH3)N], 37.9 (CH-CH2-Ph), 48.3 [Car.-CH2-CH(-CH3)N], 63.6
(NH-CH-CH2-Ph), 72.3 [N-CH(-Car.)N], 125.4 (CHar.), 126.6 (2
CHar.), 127.5 (2 CHar.), 127.7 (CHar.), 127.8 (CHar.), 128.3 (2 CHar.),
130.3 (2 CHar.), 130.7 (2 CHar.), 132.2 (Car.), 133.3 (Car.), 134.7
(Car.), 135.0 (Car.), 145.1 (Car.), 167.8 (CO) ppm. NOE: Irradiation
at 3.71–3.77 [m, 1 H, CH2-CH(-CH3)N] resulted in a NOE-signal
at 0.95 [d, 3 H, CH2-CH(-CH3)N], 2.66–2.71 [dd, 1J = 5.0, 2J =
(2S,10bR)-2-Benzyl-5-methyl-1-(p-tolylsulfonyl)-1,10b-dihydroimid-
azo[2,1-a]isoquinolin-3(2H)-one (5i): Yield: 12 %. M.p. 194 °C, Rf
(CH2Cl2) = 0.40. [α]2D0 = +263.1 (c = 1, CH2Cl2). 1H NMR
(CDCl3): δ = 2.15 [s, 3 H, CH=C(-N)CH3], 2.39 (s, 3 H, Car.-CH3),
3.07–3.11 (m, 2 H, CH-CH 2-Ph), 4.29–4.35 (m, 1 H, CH-CH2-Ph),
5.84 [s, 1 H, Car.-CH=C(-N)CH3], 5.85 [s, 1 H, N-CH(-Car.)N],
6.79–7.67 (m, 13 H, CHar.) ppm. 13C NMR (CDCl3): δ = 18.6
[CH=C(-N)CH3], 21.7 (Car.-CH3), 38.6 (CH-CH2-Ph), 62.9 (CH-
CH2-Ph), 73.5 [N-CH(-Car.)N], 115.3 [CH=C(-N)CH3], 123.9
(CHar.), 124.5 (CHar.), 126.9 (CHar.), 127.7 (CHar.), 128.0 (2 CHar.),
128.1 (2 CHar.), 129.9 (2 CHar.), 130.3 (CHar.), 130.4 (2 CHar.), 130.4
(Car.), 132.6 (Car.), 133.5 (Car.), 135.1 (Car.), 145.1 (Car.), 168.7 (CO)
ppm. C26H24N2O3S (444.55): calcd. C 70.25, H 5.44, N 6.30, S
7.21; found C 70.11, H 5.95, N 6.05, S 6.90.
15.2 Hz, 1 H, Car.-CH(H)-CH(-CH3)N], 5.61 [s, 1 H, N-CH(-Car.
)
N], irradiation at 5.61 [s, 1 H, N-CH(-Car.)N] gave a NOE signal
at 2.66–2.71 [dd, 1J = 5.0, 2J = 15.2 Hz, 1 H, cis-CH(H)-CH(-CH3)
N], 3.71–3.77 [m, 1 H, CH2-CH(-CH3)N], 7.38–7.71 (m, 3 H,
CHar.
)
ppm. Minor Isomer (2S,5R,10bR-Epimer): 1H NMR
1
(CDCl3): δ = 0.96 [d, J = 6.5 Hz, 3 H, CH-CH3], 2.11–2.18 [dd, J
= 4.7, J = 15.4 Hz, 1 H, trans-CH(H)-CH(-CH3)N], 2.39 (s, 3 H,
2
1
2
Car.-CH3), 2.47–2.53 [dd, J = 5.0, J = 15.2 Hz, 1 H, cis-CH(H)-
CH(-CH3)N], 2.96 (d, J = 4.2 Hz, 2 H, CH-CH 2-Ph), 4.02–4.07
[m, 1 H, CH2-CH(-CH3)N], 4.28 (t, J = 4.2 Hz, 1 H, CH-CH2-Ph),
5.79 [s, 1 H, N-CH(-Car.)N], 6.73–7.71 (m, 13 H, CHar.) ppm. 13C
1,5,6,10b-Tetrahydroimidazo[2,1-a]isoquinolin-3(2H)-ones 6. Gene-
ral Procedure: 10 % Pd-hydroxide/C (50 mg) were added to a solu-
tion of dihydroimidazo[2,1-a]isoquinolin-3-one 5. The mixture was
hydrogenated under atmospheric pressure whilst stirring for 3 h.
The resulting mixture was filtered through Celite and the filtrate
was evaporated under vacuum.
NMR (CDCl3): δ = 17.5 (CH-CH3), 21.6 (Car.-CH3), 33.4 [Car.
-
CH2-CH(-CH3)N], 38.1 (CH-CH2-Ph), 44.3 [Car.-CH2-CH(-CH3)
N], 63.9 (NH-CH-CH2-Ph), 69.7 [N-CH(-Car.)N], 125.4 (CHar.),
126.7 (2 CHar.), 127.7 (CHar.), 127.8 (CHar.), 127.9 (2 CHar.), 128.0
(2 CHar.), 130.2 (2 CHar.), 130.7 (2 CHar.), 132.1 (Car.), 133.5 (Car.),
135.1 (Car.), 135.6 (Car.), 145.1 (Car.), 168.7 (CO) ppm.
C26H26N3O2S (446.56): calcd. C 69.93, H 5.87, N 6.27, S 7.18;
found C 69.90, H 5.91, N 6.08, S 6.86.
(2S,10bR)-2-Methyl-1-(p-tolylsulfonyl)-1,5,6,10b-tetrahydroimidazo-
[2,1-a]isoquinolin-3(2H)-one (6a): Yield: 88 %. M.p. 171 °C, Rf (hex-
ane/EtOAc, 1:1) = 0.16. [α]2D0 = +25.9 (c = 1, CH2Cl2). H NMR
1
(CDCl3): δ = 1.19 (d, J = 7.1 Hz, 3 H, CH-CH3), 2.38 (s, 3 H, Car.
-
(2S,10bS)-2-Benzyl-1,5,6,10b-tetrahydroimidazo[2,1-a]-
isoquinolin-3(2H)-one (7a): In a Schlenk flask a solution of Na-
naphthalide (10.00 mmol) was prepared by addition of sublimed
naphthalene (1.280 g, 10.00 mmol) to a mixture of Na (0.230 g,
10.00 mmol) in dry THF (25 mL). The mixture was kept in an ul-
trasound bath for 2 min and was then stirred for 2–3 h resulting in
a homogeneous dark green solution of Na-naphthalide. This can
be used as a stock solution in several reduction experiments but it
must be used within 1 day. Portions of the stock solutions were
added dropwise to a solution of the N-tosylated precursor 6b
(0.105 g, 0.24 mmol) in dry THF (20 mL) until decolorization ce-
ased. After stirring at –100 °C for 30 min. satd. aq. NH4Cl (20 mL)
was added in portions at –100 °C. The mixture was warmed to
room temp. and was extracted with AcOEt (5 × 15 mL). The com-
bined organic layers were dried with MgSO4 and the solvent was
evaporated under vacuum. 7a (0.020 g, 30 %) was obtained as col-
orless oil after column chromatography with AcOEt. Rf (EtOAc)
= 0.31. [α]2D0 = +4.2 (c = 1, CH2Cl2). 13C NMR (CDCl3): δ = 28.3
(Car.-CH2-CH2-N), 37.0 (CH-CH2-Ph), 37.2 (Car.-CH2-CH2-N),
61.9 (CH-CH2-Ph), 70.0 [NH-CH(-Car.)N], 125.1 (CHar.), 126.7
(CHar.), 127.0 (CHar.), 128.0 (CHar.), 128.5 (2 CHar.), 129.0 (CHar.),
129.3 (2 CHar.), 133.7 (Car.), 135.3 (Car.), 137.4 (Car.), 172.9 (CO)
ppm. HRMS (+EI): C18H18N2O: calcd. 278.1419; found 278.1412.
CH3), 2.67–2.72 (m, 1 H, Car.-CH -CH2), 2.90–2.96 (m, 1 H, Car.
CH 2-CH2, CH2-CH 2-N), 3.12–3.21 (m, 1 H, CH2-CH 2-N), 3.80–
-
2
3.86 (m, 1 H, CH2-CH -N), 4.05 (q, J = 7.0 Hz, 1 H, CH-CH3),
2
5.93 [s, 1 H, N-CH-
(Car.)N], 7.03–7.86 (m, 8 H, CHar.) ppm. 13C NMR (CDCl3): δ =
19.6 (CH-CH3), 21.6 (Car.-CH3), 26.6 (Car.-CH2-CH2), 38.5 (CH2-
CH2-N), 57.5 (CH-CH3), 71.5 [N-CH(-Car.)N], 126.2 (CHar.), 127.2
(CHar.), 127.7 (2 CHar.), 128.3 (CHar.), 128.6 (CHar.), 130.3 (2
CHar.), 133.4 (Car.), 133.5 (Car.), 135.7 (Car.), 144.9 (Car.), 171.3
(CO) ppm. HRMS (+EI): C19H20N2O3S: calcd. 356.1195; found
356.1184.
(2S,10bR)-2-Benzyl-1-(p-tolylsulfonyl)-1,5,6,10b-tetrahydroimidazo-
[2,1-a]isoquinolin-3(2H)-one (6b): Yield: 99 % M.p. 206–207 °C, Rf
(CH2Cl2/CH3OH, 100:1) = 0.40. [α]2D0 = +13.4 (c = 1, CH2Cl2). ee
Ն 99 %, HPLC: Chiralcell OD, hexane/isopropyl alcohol, 95:5,
1
0.5 mL/min, λ = 254 nm). H NMR (CDCl3): δ = 2.28–2.30 (m, 2
H, Car.-CH -CH2-N), 2.39 (s, 3 H, Car.-CH3), 2.84–3.07 (m, 3 H,
2
Car.-CH -CH2-N, CH-CH -Ph), 3.88–3.94 (m, 1 H, Car.-CH2-CH
2
2
2-N), 4.30 (t, J = 4.1 Hz, 1 H, CH-CH2-Ph), 5.86 [s, 1 H, N-CH(-
Car.)N], 6.65–7.72 (m, 13 H, CHar.) ppm. 13C NMR (CDCl3): δ =
21.6 (Car.-CH3), 27.1 (Car.-CH2-CH2-N), 38.0 (CH-CH2-Ph), 38.5
(Car.-CH2-CH2-N), 63.5 (CH-CH2-Ph), 72.1 [N-CH(-Car.)N], 126.6
(CHar.), 126.8 (CHar.), 127.3 (CHar.), 127.4 (2 CHar.), 127.8 (CHar.), (2S,10bS)-2-Benzyl-1-methyl-1,5,6,10b-tetrahydroimidazo[2,1-a]-
128.0 (2 CHar.), 128.6 (CHar.), 130.3 (4 CHar.), 132.8 (Car.), 133.2 isoquinolin-3(2H)-one (7b): According to the procedure used for the
Eur. J. Org. Chem. 2005, 663–672
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
669