The Journal of Physical Chemistry B
ARTICLE
(29) Chatterjee, D.; Sengupta, A.; Mitra, A.; Basak, S. Inorg. Chem.
Commun. 2006, 9, 1219–1222.
(30) Prieto, F.; Coles, B. A.; Compton, R. G. J. Phys. Chem. B 1998,
102, 7442–7447.
(40) (a) Fukuzumi, S.; Suenobu, T.; Kawamura, S.; Ishida, A.;
Mikami, K. Chem. Commun. 1997, No. 3, 291–292. (b) Fukuzumi, S.;
Tokuda, Y. Bull. Chem. Soc. Jpn. 1992, 65, 831–836.
(41) Chikashita, H.; Ide, H.; Itoh, K. J. Org. Chem. 1986, 51,
5400–5405.
(42) Sigala, P. A.; Kraut, D. A.; Caaveiro, J. M. M.; Pybus, B.; Ruben,
E. A.; Ringe, D.; Petsko, G. A.; Herschlag, D. J. Am. Chem. Soc. 2008,
130, 13696–13708.
(43) (a) Zhang, B.-L.; Zhu, X.-Q.; Lu, J.-Y.; He, J.-Q.; Wang,
P. G.; Cheng, J.-P. J. Org. Chem. 2003, 68, 3295–3298. (b) Zhu,
X.-Q.; Wang, H.-Y.; Wang, J.-S.; Liu, Y.-C. J. Org. Chem. 2001, 66,
344–347.
(44) Kimura, M.; Tanaka, K. Angew. Chem., Int. Ed. 2008, 47,
9768–9771.
(45) Ohno, A.; Oda, S.; Ishikawa, Y.; Yamazaki, N. J. Org. Chem.
2000, 65, 6381–6387.
(46) Isaacs, N. S. Physical Organic Chemistry, 2nd ed.; Addison
Wesley Longman: London, 1995.
(47) Cho, B. H.; Kim, J. H.; Jeon, H. B.; Kim, K. S. Tetrahedron 2005,
61, 4341–4346.
(48) Viscontini, M.; Hochreuter, R.; Karrer, P. Helv. Chim. Acta
1953, 36, 1777–1783.
(31) (a) Fukuzumi, S.; Fujioka, N.; Kotani, H.; Ohkubo, K.; Lee,
Y.-M.; Nam, W. J. Am. Chem. Soc. 2009, 131, 17127–17134. (b) Yuasa, J.;
Yamada, S.; Fukuzumi, S. J. Am. Chem. Soc. 2008, 130, 5808–5820.
(c) Fukuzumi, S.; Kotani, H.; Lee, Y.-M.; Nam, W. J. Am. Chem. Soc.
2008, 130, 15134–15142. (d) Yuasa, J.; Yamada, S.; Fukuzumi, S. J. Am.
Chem. Soc. 2006, 128, 14938–14948. (e) Yuasa, J.; Fukuzumi, S. J. Am.
Chem. Soc. 2006, 128, 14281–14292.
(32) (a) Fukuzumi, S.; Yuasa, J.; Suenobu, T. J. Am. Chem. Soc. 2002,
124, 12566–12573. (b) Fukuzumi, S.; Ohkubo, K.; Okamoto, T. J. Am.
Chem. Soc. 2002, 124, 14147–14155. (c) Fukuzumi, S.; Fujii, Y.;
Suenobu, T. J. Am. Chem. Soc. 2001, 123, 10191–10199. (d) Fukuzumi,
S.; Koumitsu, S.; Hironaka, K.; Tanaka, T. J. Am. Chem. Soc. 1987,
109, 305–316.
(33) Matsuo, T.; Mayer, J. M. Inorg. Chem. 2005, 44, 2150–2158.
(34) (a) Zhu, X.-Q.; Zhang, J.-Y.; Cheng, J.-P. J. Org. Chem. 2006,
71, 7007–7015. (b) Zhu, X.-Q.; Cao, L.; Liu, Y.; Yang, Y.; Lu, J.-Y.;
Wang, J.-S.; Cheng, J.-P. Chem.—Eur. J. 2003, 9, 3937–3945. (c) Zhu,
X.-Q.; Li, H.-R.; Li, Q.; Ai, T.; Lu, J.-Y.; Yang, Y.; Cheng, J.-P. Chem.—
Eur. J. 2003, 9, 871–880. (d) Zhu, X.-Q.; Liu, Y.; Zhao, B.-J.; Cheng, J.-P.
J. Org. Chem. 2001, 66, 370–375. (e) Zhu, X.-Q.; Zou, H.-L.; Yuan,
P.-W.; Liu, Y.; Cao, L.; Cheng, J.-P. J. Chem. Soc., Perkin Trans. 2. 2000,
No. No. 9, 1857–1861. (f) Zhu, X.-Q.; Zhao, B.-J.; Cheng, J.-P. J. Org.
Chem. 2000, 65, 8158–8163. (g) Zhao, B.; Zhu, X.; Lu, Y.; Xia, C.-Z.;
Cheng, J.-P. Tetrahedron Lett. 2000, 41, 257–260. (h) Cheng, J.-P.; Lu,
Y.; Zhu, X.-Q.; Sun, Y.-K.; Bi, F.; He, J.-Q. J. Org. Chem. 2000, 65,
3853–3857. (i) Zhu, X.-Q.; Liu, Y.-C.; Cheng, J.-P. J. Org. Chem. 1999,
64, 8980–8981.
(49) Dauben, J. H.; Honnen, L.; Harmon, K. J. Org. Chem. 1960,
25, 1442–1445.
(50) Zhu, X.-Q.; Zhang, M.-T.; Yu, A.; Wang, C.-H.; Cheng, J.-P.
J. Am. Chem. Soc. 2008, 130, 2501–2516.
(51) Zhu, X.-Q.; Liang, H.; Zhu, Y.; Cheng, J.-P. J. Org. Chem. 2008,
73, 8403–8410.
(52) Zhu, X.-Q.; Tan, Y.; Cao, C.-T. J. Phys. Chem. B 2010,
114, 2058–2075.
(53) Equations 5ꢀ7 were constructed from the thermodynamic
cycles in Scheme 4. Note that we used the term free-energy change ΔGet
to replace the enthalpy change ΔHet in eqs 5ꢀ7 for the electron transfer
processes. The justification of this treatment is that entropies associated
with electron transfer are negligible, as verified by Arnett et al: Arnett,
E. M.; Amarnath, K.; Harvey, N. G.; Cheng, J.-P. J. Am. Chem. Soc. 1990,
112, 344–355.
(54) Wayner, D. D. M.; Parker, V. D. Acc. Chem. Res. 1993,
26, 287–294.
(55) Zhang, X.-M.; Bruno, J. W.; Enynnaya, E. J. Org. Chem. 1998,
63, 4671.
(56) Warren, J. J.; Tronic, T. A.; Mayer, J. M. Chem. Rev. 2010,
110, 6961–7001.
(57) Miller, L. L.; Valentine, J. R. J. Am. Chem. Soc. 1988, 110,
3982–3989.
(58) Zhu, X.-Q.; Liu, Q.-Y.; Chen, Q.; Mei, L.-R. J. Org. Chem. 2010,
75, 789–808.
(35) (a) Kil, H. J.; Lee, I. S. H. J. Phys. Chem. A 2009,
113, 10704–10709. (b) Lee, I. S. H.; Kil, H. J.; Ji, Y. R. J. Phys. Org.
Chem. 2007, 20, 484–490. (c) Lee, I. S. H.; Ji, Y. R.; Jeoung, E. H. J. Phys.
Chem. A 2006, 110, 3875–3881. (d) Lee, I. S. H.; Chow, K. H.; Kreevoy,
M. M. J. Am. Chem. Soc. 2002, 124, 7755–7761. (e) Lee, I. S. H.; Jeoung,
E. H.; Kreevoy, M. M. J. Am. Chem. Soc. 2001, 123, 7492–7496. (f) Lee,
I. S. H.; Jeoung, E. H. J. Org. Chem. 1998, 63, 7275–7279. (g) Kreevoy,
M. M.; Kotchevar, A. T. J. Am. Chem. Soc. 1990, 112, 3579–3583.
(h) Ostovic, D.; Lee, I. S. H.; Roberts, R. M. G.; Kreevoy, M. M. J. Org.
Chem. 1985, 50, 4206–4211.
(36) (a) Aizpurua, J. M.; Palomo, C.; Fratila, R. M.; Ferron, P.;
Benito, A.; Gomez-Bengoa, E.; Miranda, J. I.; Santos, J. I. J. Org. Chem.
2009, 74, 6691–6702. (b) Hapiot, P.; Moiroux, J.; Saveant, J. M. J. Am.
Chem. Soc. 1990, 112, 1337–1343. (c) Xu, H.-J.; Dai, D.-M.; Liu, Y.-C.;
Li, J.; Luo, S.-W.; Wu, Y.-D. Tetrahedron Lett. 2005, 46, 5739–5742.
(d) Ellis, W. W.; Raebiger, J. W.; Curtis, C. J.; Bruno, J. W.; DuBois, D. L.
J. Am. Chem. Soc. 2004, 126, 2738–2743.
(37) (a) Ogata, K.; Murayama, H.; Sugasawa, J.; Suzuki, N.; Fukuzawa,
S.-i. J. Am. Chem. Soc. 2009, 131, 3176–3177. (b) Srogl, J.; Voltrova, S. Org.
Lett. 2009, 11, 843–845. (c) Dzygiel, P.; Reeve, T. B.; Piarulli, U.;
Krupicka, M.; Tvaroska, I.; Gennari, C. Eur. J. Org. Chem. 2008, No. 7,
1253–1264. (d) Sharma, R. K.; Nethaji, M.; Samuelson, A. G. Tetrahedron:
Asym. 2008, 19, 655–663. (e) Ram, R. N.; Singh, V. Tetrahedron Lett. 2006,
47, 7625–7628.
(59) (a) Page, M.; Williams, A. Organic and Bio-organic Mechanism;
Longman: Harlow, UK, 1997; Chapter 3, pp 52ꢀ79. (b) Williams, A.
Acc. Chem. Res. 1984, 17, 425–430. (c) Williams, A. Acc. Chem. Res. 1989,
22, 387–392. (d) Williams, A. Adv. Phys. Org. Chem. 1991, 27, 1.
(e) Williams, A. J. Am. Chem. Soc. 1985, 107, 6335–6339.
(60) Eberson, L. Electron Transfer Reactions in Organic Chemistry;
Springer: Berlin, 1987.
(38) (a) Xu, H.-J.; Liu, Y.-C.; Fu, Y.; Wu, Y.-D. Org. Lett. 2006,
8, 3449–3451. (b) Lo, H. C.; Fish, R. H. Angew. Chem., Int. Ed. 2002,
41, 478–481.
(61) (a) Marcus, R. A. J. Phys. Chem. 1968, 72, 891–899. (b) Albery,
W. J. Annu. Rev. Phys. Chem. 1980, 31, 227–263. (c) Breugst, M.;
Zipse, H.; Guthrie, J. P.; Mayr, H. Angew. Chem., Int. Ed. 2010, 49,
5165–5169.
(39) (a) Fang, X. Q.; Xu, H. J.; Jiang, H.; Liu, Y. C.; Fu, Y.; Wu, Y. D.
Tetrahedron Lett. 2009, 50, 312–315. (b) Akagawa, K.; Akabane, H.;
Sakamoto, S.; Kudo, K. Org. Lett. 2008, 10, 2035–2037. (c) Kang, Q.;
Zhao, Z.-A.; You, S.-L. Org. Lett. 2008, 10, 2031–2034. (d) Martin,
N. J. A.; Ozores, L.; List, B. J. Am. Chem. Soc. 2007, 129, 8976–8977.
(e) Yang, J. W.; List, B. Org. Lett. 2006, 8, 5653–5655. (f) Martin,
N. J. A.; List, B. J. Am. Chem. Soc. 2006, 128, 13368–13369. (g) Zhang,
Z.; Gao, J.; Xia, J.-J.; Wang, G.-W. Org. Biomol. Chem. 2005, 3,
1617–1619.
(62) According to Hammett equation log K = Fσ and ΔH ≈ ꢀRT
log K, the line slope of ΔH against σ should be approximately equal to
ꢀ5.7F.
(63) Zhu, X.-Q.; Li, Q.; Hao, W.-F.; Cheng, J.-P. J. Am. Chem. Soc.
2002, 124, 9887–9893.
(64) The value is derived from the k-value of Csp3ꢀH in gas (674.6
kcal Å2 molꢀ1 from the following book: Cottrell, T. L. The strengths of
Chemical Bonds; Butterworths Scientific Publication: London, 1954)
14810
dx.doi.org/10.1021/jp2067974 |J. Phys. Chem. B 2011, 115, 14794–14811