J. Am. Chem. Soc. 2000, 122, 8329-8330
Highly Stereoselective Intermolecular Radical
8329
Addition to Aldehyde Hydrazones from a Chiral
3-Amino-2-oxazolidinone
Figure 1. Retrosynthetic analysis of chiral R-branched amines according
to a radical addition strategy and potential origins of stereocontrol.
Gregory K. Friestad* and Jun Qin
Department of Chemistry, UniVersity of Vermont
Burlington, Vermont, 05405
ReceiVed June 19, 2000
Asymmetric synthesis of chiral R-branched amines, ubiquitous
substructures within natural products and other biologically active
synthetic targets, is underdeveloped relative to that of other
functional groups. Consequently, commonly used indirect syn-
thetic methods exploit stepwise introduction of carbon-carbon
bonds, stereogenic centers, and nitrogen (e.g., epoxide opening
with N-nucleophiles). Direct asymmetric amine synthesis by
addition of carbon nucleophiles to the CdN bond of carbonyl
imino derivatives holds promise for improved efficiency by
introducing the stereogenic center and carbon-carbon bond in
one step. However, employing basic organometallic reagents for
this purpose1 often results in competing aza-enolization2 and can
lack generality or functional group tolerance, while Strecker3a and
Mannich3b reactions restrict the incoming nucleophile to cyanide
and enolizable carbonyl compounds, respectively. Versatile new
stereocontrolled carbon-carbon bond construction methods for
direct asymmetric amine synthesis under mild conditions are
therefore in high demand.3
To address the general problem of asymmetric amine synthesis,
nonpolar radical additions to CdN bonds4,5 (Figure 1) would (a)
circumvent imine enolization problems, (b) efficiently construct
crowded C-C bonds, and (c) avoid some functional group
restrictions associated with ionic transformations. Stereocontrolled
intermolecular radical addition6 to CdN bonds was unknown until
Naito7 and Bertrand8 independently reported additions to chiral
glyoxylate and malonate imino derivatives. In these cases the
nearby carbonyl groups were required to activate the radical
Figure 2. (a) Design of a hypothetical N-linked auxiliary approach for
stereocontrolled radical addition to CdN bonds, with Lewis acid (LA)
chelation inducing a rigid, electronically activated radical acceptor. (b)
Implementation with N-acylhydrazones derived from 4-benzyl-2-oxazo-
lidinone.
acceptor or attach a chiral auxiliary. Obviating these requirements
would considerably enhance the versatility of radical additions
for asymmetric amine synthesis. Toward this end, we envisioned
a nitrogen-linked auxiliary approach incorporating Lewis acid
activation and restriction of rotamer populations as key design
elements. We now disclose preparation of novel N-acylhydrazones
from N-amino-4-benzyl-2-oxazolidinone and their implementation
for highly enantioselective intermolecular radical addition reac-
tions.
We first focused on incorporating features desirable for stereo-
control, namely restricted rotamer populations and Lewis acid
actiVation, beginning with a hydrazone with a proximal stereo-
genic center (A, Figure 2). Constraining the C-N bond within a
ring and including a carbonyl group would enable two-point
binding of a Lewis acid to afford a rigid structure (B) with the
stereocontrol element localized over one face of the hydrazone.
The Lewis acid would also increase reactivity toward nucleophilic
radicals9 by lowering the LUMO energy of the CdN bond.
Finally, we noted the facility of reductive cleavage of N-N
bonds,1d,10 whereby the N-linked auxiliary would be released for
reuse after stereoisomer purification. Oxazolidinones11,12 emerged
as obvious initial candidates to test our hypothesis. Surprisingly,
N-amino derivatives of oxazolidinones have appeared in the
literature only rarely,13 and to our knowledge have never been
used for asymmetric synthesis.
(1) Reviews: (a) Kobayashi, S.; Ishitani, H. Chem. ReV. 1999, 99, 1069.
(b) Davis, F. A.; Zhou, P.; Chen, B.-C. Chem. Soc. ReV. 1998, 27, 13. (c)
Bloch, R. Chem. ReV. 1998, 98, 1407. (d) Enders, D.; Reinhold: U.
Tetrahedron Asymmetry 1997, 8, 1895. (e) Denmark, S. E.; Nicaise, O. J.-C.
J. Chem. Soc., Chem. Commun. 1996, 999.
(2) Aza-enolization of imines with Grignard reagents: Stork, G.; Dowd,
S. R. J. Am. Chem. Soc. 1963, 85, 2178. Less basic organocerium reagents
also exhibit aza-enolization: Enders, D.; Diez, E.; Fernandez, R.; Martin-
Zamora, E.; Munoz, J. M.; Pappalardo, R. R.; Lassaleta, J. M. J. Org. Chem.
1999, 64, 6329.
(3) For selected recent examples, see: (a) Strecker reactions: Porter, J.
R.; Wirschun, W. G.; Kuntz, K. W.; Snapper, M. L.; Hoveyda, A. H. J. Am.
Chem. Soc. 2000, 122, 2657. Ishitani, H.; Komiyama, S.; Hasegawa, Y.;
Kobayashi, S. J. Am. Chem. Soc. 2000, 122, 762. Corey, E. J.; Grogan, M. J.
Org. Lett. 1999, 1, 157. (b) Mannich reactions: Fujii, A.; Hagiwara, E.;
Sodeoka, M. J. Am. Chem. Soc. 1999, 121, 5450. Ferraris, D.; Dudding, T.;
Young, B.; Drury, W. J., III; Lectka, T. J. Org. Chem. 1999, 64, 2168. (c)
Allylation: Kobayashi, S.; Hirabayashi, R. J. Am. Chem. Soc. 1999, 121, 6942.
(d) Imino-ene reaction: Drury, W. J., III; Ferraris, D.; Cox, C.; Young, B.;
Lectka, T. J. Am. Chem. Soc. 1998, 120, 11006. Yamanaka, M.; Nishida, A.;
Nakagawa, M. Org. Lett. 2000, 2, 159.
(4) (a) Review of radical cyclizations involving nitrogen: Fallis, A. G.;
Brinza, I. M. Tetrahedron 1997, 53, 17543. (b) General reviews of radical
reactions in organic synthesis: Giese, B. Radicals in Organic Synthesis:
Formation of Carbon-Carbon Bonds; Pergamon Press: New York, 1986.
Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. ReV. 1991, 91, 1237. Giese,
B.; Kopping, B.; Gobel, T.; Dickhaut, J.; Thoma, G.; Kulicke, K. J.; Trach,
F. Org. React. 1996, 48, 301.
(5) For representative nonstereoselective intermolecular radical additions
to CdN, see: Hart, D. J.; Seely, F. L. J. Am. Chem. Soc. 1988, 110, 1631.
Shono, T.; Kise, N.; Fujimoto, T. Tetrahedron Lett. 1991, 32, 525. Hanamoto,
T.; Inanaga, J. Tetrahedron Lett. 1991, 32, 3555. Kim, S.; Yoon, J.-Y. J. Am.
Chem. Soc. 1997, 119, 5982. Miyabe, H.; Shibata, R.; Ushiro, C.; Naito, T.
Tetrahedron Lett. 1998, 39, 631. Miyabe, H.; Shibata, R.; Sangawa, M.; Ushiro,
C.; Naito, T. Tetrahedron 1998, 54, 11431. Bertrand, M. P.; Feray, L.;
Nouguier, R.; Perfetti, P. J. Org. Chem. 1999, 64, 9189. Miyabe, H.; Ueda,
M.; Yoshioka, N.; Yamakawa, K.; Naito, T. Tetrahedron 2000, 56, 2413.
(6) For reviews of acyclic stereocontrol in radical addition to CdC bonds,
see: (a) Sibi, M. P.; Porter, N. A. Acc. Chem. Res. 1999, 32, 163 and references
therein. (b) Curran, D. P.; Porter, N. A.; Giese, B. Stereochemistry of Radical
Reactions; Concepts, Guidelines, and Synthetic Applications; VCH: New
York; 1995.
(7) (a) Miyabe, H.; Ushiro, C.; Naito, T. J. Chem. Soc., Chem. Commun.
1997, 1789. (b) Miyabe, H.; Fujii, K.; Naito, T. Org. Lett. 1999, 1, 569. (c)
Miyabe, H.; Ushiro, C.; Ueda, M.; Yamakawa, K.; Naito, T. J. Org. Chem.
2000, 65, 176. (d) Miyabe, H.; Konishi, C.; Naito, T. Org. Lett. 2000, 2,
1443.
(8) Bertrand, M. P.; Feray, L.; Nouguier, R.; Stella, L. Synlett 1998, 780.
Bertrand, M. P.; Feray, L.; Nouguier, R.; Perfetti, P. Synlett 1999, 1148.
Bertrand, M. P.; Coantic, S.; Feray, L.; Nouguier, R.; Perfetti, P. Tetrahedron
2000, 56, 3951.
(9) Protonation of imines leads to improved yields in radical addition.
Russell, G. A.; Yao, C.-F.; Rajaratnam, R.; Kim, B. H. J. Am. Chem. Soc.
1991, 113, 373. For a review of Lewis acid effects in radical reactions, see:
Renaud, P.; Gerster, M. Angew. Chem., Int. Ed. 1998, 37, 2562.
(10) Burk, M. J.; Feaster, J. E. J. Am. Chem. Soc. 1992, 114, 6266. Sturino,
C. F.; Fallis, A. G. J. Am. Chem. Soc. 1994, 116, 7447.
(11) Evans, D. A.; Kim, A. S. In Encyclopedia of Reagents for Organic
Synthesis; Paquette, L. A., Ed.; Wiley: New York, 1995; Vol. 1, pp 345-
356.
(12) Oxazolidinones have been used previously for stereocontrolled radical
addition to alkenes. (a) Sibi, M. P.; Jasperse, C. P.; Ji, J. J. Am. Chem. Soc.
1995, 117, 10779. (b) Sibi, M. P.; Ji, J.; Sausker, J. B.; Jasperse, C. P. J. Am.
Chem. Soc. 1999, 121, 7517.
10.1021/ja002173u CCC: $19.00 © 2000 American Chemical Society
Published on Web 08/10/2000