2410
K. Shimamoto et al. / Bioorg. Med. Chem. Lett. 10 (2000) 2407±2410
the functional groups of the other stereoisomers (d- or
erythro-isomers) ®t with the pharmacophore, their sub-
stituents can not occupy the same space as that of the
bulky substituent of DHKA or l-TBOA.
6. Coleman, R. S.; Carpenter, A. J. Tetrahedron Lett. 1992,
33, 1697.
7. Garner, P.; Park, J. M. Org. Synth. 1991, 70, 18.
8. Purity of each isomer of 6 was con®rmed by conversion to
dimethyl ester 7. No peaks corresponding to methyl esters of
the other isomer were detected by 400 MHz NMR (3.61 and
3.77 ppm for threo-7; 3.73 and 3.79 ppm for erythro-7). How-
ever, deprotection of the dimethyl ester threo-7 was accom-
panied with the epimerization (ꢀ30%).
So far, it is well known that the pharmacological pro-
®les of EAAT1 and EAAT3 are very similar while
EAAT2 shows dierent selectivity from these subtypes.
Interestingly, d-TBOA shows a major loss of activity on
EAAT1 (30-fold less potent than l-TBOA), while it
remains substantially active on EAAT3 (only threefold
less potent than l-TBOA). EAAT3 is more tolerant to
the d-isomers.
9. Enantiomeric purity (>95%) of each compound was con-
®rmed by chiral HPLC [column; CROWNPAK CR(+) or
CR( ), Daicel Chem. Ind. Ltd (Japan), eluent; 1% aqueous
HClO4].
10. Analytical data for l-TBOA: mp 172±175 ꢁC (dec.); [a]D
473.6ꢁ (c 0.68, 1 N HCl); 1H NMR (1 N DCl/D2O,
400 MHz): d 4.57 (d, 1H, J=2.5 Hz), 4.62 (d, 1H, J=11.5 Hz),
4.71 (d, 1H, J=2.5 Hz), 4.87 (d, 1H, J=11.5 Hz), 7.45 (m,
5H); 13C NMR (1 N DCl/D2O, 100 MHz): d 55.4, 74.5, 75.1,
129.6, 129.7, 129.8, 136.8, 169.4, 172.5; HRMS (FAB) m/z
calcd for C11H14O5N (M+H)+ 240.0871, found 240.0863.
11. The IC50 values of both l- and d-TBOA were lower than the
reported value for dl-TBOA (ref 5), since [3H]CGP 39653
(2nM) was used as a radioligand instead of [3H]CGS 19755. IC50
values for [3H]CGP 39653 binding were as follows (mM); d-
TBOA 181Æ23, l-EBOA 680Æ58, d-EBOA 26Æ1.3, l-TMOA
511Æ17, l-TNOA1 151Æ20, l-TNOA2 194Æ7.0. l-TMOA
inhibited [3H]KA binding (48Æ5.6 mM) and [3H]AMPA binding
(222Æ42 mM). The other derivatives showed very low anity
(>500 mM) for KA and AMPA receptors.
In summary, the optically pure isomers provided precise
information on the structure±activity relationship of
glutamate transporter blockers. These compounds can
be used as lead compounds to design new blockers with
greater subtype selectivity.
Acknowledgements
We wish to thank Prof. S. Nakanishi at Kyoto Uni-
versity (Japan) for providing the CHO cells expressing
mGluRs and Dr. R. P. Seal at Oregon Health Sciences
University for critical reading of this manuscript. This
work was supported by a Grant-in-Aid from the Ministry
of Education, Science, Sports, and Culture, Japan.
12. Vandenberg, R. J.; Mitrovic, A. D.; Chebib, M.; Balcar,
V. W.; Johnston, G. A. R. Mol. Pharmacol. 1997, 51, 809.
13. (a) Bridges, R. J.; Lovering F. E.; Koch, H.; Cotman, C.
W.; Chamberlin, A. R. Neurosci. Lett. 1994, 174, 193. (b)
Esslinger, C. S.; Koch, H. P.; Kavanaugh, M. P.; Philips, D.
P.; Chamberlin, A. R.; Thompson, C. M.; Bridges, R. J.
Bioorg. Med. Chem. Lett. 1998, 8, 3101.
References and Notes
14. In our study, MPDC (100 mM) also evoked the transport
currents in EAAT1 (16% to control) and EAAT3 (8%)
although it blocked EAAT2 as shown in ref 13b.
1. (a) Danbolt, N. C.; Chaudhry, F. A.; Dehnes, Y.; Lehre, K.
P.; Levy, L. M.; Ullensvang, K.; Storm-Mathisen, J. Prog.
Brain Res. 1998, 116, 23. (b) Billups, B.; Rossi, D.; Oshima, T.;
Warr, O.; Takahashi, M.; Sarantis, M.; Szatkowski, M.; Att-
well, D. Prog. Brain Res. 1998, 116, 45. (c) Seal, R. P.; Amara,
S. G. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 431.
2. Zerangue, N.; Kavanaugh, M. P. Nature 1996, 383, 634.
3. Bridges, R. J.; Kavanaugh, M. P.; Chamberlin, A. R. Curr.
Pharm. Des. 1999, 5, 363.
4. Lebrun, B.; Sakaitani, M.; Shimamoto, K.; Yasuda-
Kamatani, Y.; Nakajima, T. J. Biol. Chem. 1997, 272, 20336.
5. Shimamoto, K.; Lebrun, B.; Yasuda-Kamatani, Y.; Sakai-
tani, M.; Shigeri, Y.; Yumoto, N.; Nakajima, T. Mol. Phar-
macol. 1998, 53, 195.
15. (a) Bridges, R. J.; Stanley, M. S.; Anderson, M. W.; Cot-
man, C. W.; Chamberlin, A. R. J. Med. Chem. 1991, 34, 717. (b)
Bridges, R. J.; Lovering, F. E.; Humphery, J. M.; Stanley, M. S.;
Blakely, T. N.; Cristofaro, M. F.; Chamberlin, A. R. Bioorg.
Med. Chem. Lett. 1993, 3, 115. (c) Liec, I.; Chebib, M.; Cooper,
B.; Dias, L. S.; Balcar, V. J. Neurochem. Int. 2000, 36, 319.
16. Molecular modelings were performed by using
QUANTA/CHARMm system (Molecular Simulations Inc.).
The CHARMm energy minimization with distance-dependent
dielectric term (e=80) was applied. See Shimamoto, K.;
Ohfune, Y. J. Med. Chem. 1996, 39, 407. In this reference we
have also reported the preparation of MPDC as CMP-III.