The synthesis of 1 began with the protected L-N-benzoyl
phenylalaninol 6 as shown in Scheme 2. Oxidation of alcohol
ketone 10 in 80% yield. Hydrogenolysis of oxazoline10 10
in 1:10 AcOH/MeOH was performed under 70 psi of H2
and ambient temperature. Under these conditions, we achieved
not only hydrogenolysis of oxazoline moiety but also
cyclization of the intermediate aminoketone to pyrrolidine
11, a known precursor of preussin,3i as a single isomer in
50% yield. Spectroscopic data and the specific rotation of
11 were in good agreement with the literature values
reported.3i Finally, pyrrolidine 11 was methylated conven-
tionally11 to produce (+)-preussin in 78% yield (Scheme 3).
Scheme 2a
Scheme 3a
a (a) Dess-Martin periodinane, CH2Cl2; (b) CH2dCHMgBr,
THF, 70% for 2 steps; (c) Ac2O, pyr, CH2Cl2, 99%; (d) Pd(PPh3)4,
K2CO3, CH3CN, 83%.
6 with Dess-Martin periodinane4b,5 gave the corresponding
aldehyde without racemization,4b,5b which was reacted with
vinylmagnesium bromide in THF at 0 °C to afford the
corresponding allyl alcohol 7 as an ca. 1.1:1 mixture of syn/
anti isomers (1H NMR) in 70% yield.6 Acetylation of the
hydoxyl group yielded the secondary allylic acetate. A
standard oxazoline ring formation reaction [Pd(PPh3)4, K2-
CO3, in CH3CN] of the allylic acetate of 7 gave the desired
trans-oxazoline 8 as the major compound with high diaste-
reoselectivity (14:1) and in good yield (83%).5
a (a) 9-BBN, THF, 82%; (b) RuCl3, NaIO4, NaHCO3, CCl4/
CH3CN/H2O; (c) DCC, DMAP, NH(CH3)OCH3-HCl, Et3N, CH2Cl2,
85% for 2 steps; (d) C9H19MgBr, THF, -30 °C, 80%; (e) Pd(OH)2/
H2, AcOH/MeOH (1:9), 50%; (f) HCHO, NaBH3CN, AcOH, 78%.
Oxidation of alkene 8 with 9-BBN7 gave the corresponding
alcohol in 82% yield. This alcohol was further oxidized to
the corresponding acid with ruthenium chloride.8 The result-
ing carboxylic acid was converted to its Weinreb amide9 9
via DCC-mediated condensation with N,O-dimethylhydroxyl-
amine in 85% yield. Treatment of the amide with nonyl-
magnesium bromide (THF, -30 f 0 °C, 1 h) provided
In summary, we report a new asymmetric synthetic method
for (+)-preussin utilizing oxazoline 8. The key features in
this strategy are the diastereoselective oxazoline formation
reaction catalyzed by palladium(0) and pyrrolidine formation
by catalytic hydrogenation of oxazoline.
Acknowledgment. Financial support provided by the
KPRC is gratefully acknowledged.
(3) (a) Pak, C. S.; Lee, G. H. J. Org. Chem. 1991, 56, 1128. (b)
Shimazaki, M.; Okazaki, F.; Nakajima, F.; Ishikawa, T.; Ohta, A.
Heterocycles 1993, 36, 1823. (c) McGrane, P. L.; Livinghouse, T. J. Am.
Chem. Soc. 1993, 115, 11485. (d) Deng, W.; Overman, L. E. J. Am. Chem.
Soc. 1994, 116, 11241. (e) Overhand, M.; Hecht, S. M. J. Org. Chem. 1994,
59, 4721. (f) Yoda, H.; Yamazaki, H.; Takabe, K. Tetrahedron: Asymmetry
1996, 7, 373. (g) Beier, C.; Schaumann, E. Synthesis 1997, 1296. (h) Armas,
P. de; Garcia-Tellado, F.; Marrero-Tellado, J. J.; Robles, J. Tetrahedron
Lett. 1998, 39, 131. (i) Kanazawa, A.; Gillet, S.; Delair, P.; Greene, A. E.
J. Org. Chem. 1998, 63, 4660. (j) Veeresa, G.; Datta, A. Tetrahedron 1998,
54, 15673.
Supporting Information Available: Experimental pro-
cedure and characterization data for compounds 1 and 9-11.
This material is available free of charge via the Internet at
OL000289P
(4) (a) Lee, K.-Y.; Kim, Y.-H.; Park, M.-S.; Ham, W.-H. Tetrahedron
Lett. 1998, 39, 8129. (b) Lee, K.-Y.; Kim, Y.-H.; Park, M.-S.; Ham, W.-H.
J. Org. Chem. 1999, 64, 9450. For similar Pd(0)-mediated oxazoline
formation reactions, see: (c) Hansel, J.-G.; O’Hogan, S.; Lensky, S.; Ritter,
A. R.; Miller, M. J. Tetrahedron Lett. 1995, 36, 2913. (d) Cook, G. R.;
Shanker, P. S. Tetrahedron Lett. 1998, 39, 3405. (e) Cook, G. R.; Shanker,
P. S.; Peterson, S. L. Org. Lett. 1999, 1, 615.
(5) (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155. (b)
Meyers, A. G.; Zhong, B.; Movassaghi, M.; Kung, D. W.; Lanman, B. A.;
Kwon, S. Tetrahedron Lett. 2000, 41, 1359.
(8) Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org.
Chem. 1981, 46, 3936.
(9) (a) Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815. (b)
Fehrentz, J.-A.; Castro, B. Synthesis 1983, 676.
(10) (a) Sunazuka, T.; Nagamitsu, T.; Matsuzaki, K.; Tanaka, H.; Omura,
S.; Smith, A. B., III. J. Am. Chem. Soc. 1993, 115, 5302. (b) Nagamitsu,
K.; Sunazuka, T.; Tanaka, H.; Omura, S.; Sprengeler, P. A.; Smith, A. B.,
III. J. Am. Chem. Soc. 1996, 118, 3584. (c) Soucy, F.; Grenier, L.; Behnke,
M. L.; Destree, A. T.; McCormack, T. A.; Adams, J.; Plamondon, L. J.
Am. Chem. Soc. 1999, 121, 9967.
(6) Denis, J.-N.; Correa, A.; Greene, A. E. J. Org. Chem. 1991, 56, 6939.
(7) Brown, H. C.; Gundu Rao, C.; Kulkarni, S. U. Synthesis 1980, 151.
(11) Borch, R. F.; Hassid, A. I. J. Org. Chem. 1972, 37, 1673.
4042
Org. Lett., Vol. 2, No. 25, 2000