2574
M. Takahashi et al. / Bioorg. Med. Chem. Lett. 10 (2000) 2571±2574
5. Boukouvalas, J.; Cheng, Y. X.; Robichaud, J. J. Org.
Chem. 1998, 63, 228.
6. (a) Magnuson, S. R.; Sepp-Lorenzino, L.; Rosen, N.;
Danishefsky, S. J. J. Am. Chem. Soc. 1998, 120, 1615. (b)
Miyaoka, H.; Kajiwara, Y.; Yamada, Y. Tetrahedron Lett.
2000, 41, 911.
7. Takahashi, M.; Dodo, K.; Hashimoto, Y.; Shirai, R. Tet-
rahedron Lett. 2000, 41, 2111.
8. 1H NMR (500 MHz, CDCl3) data are as follows: 2 (clear
oil, d6-DMSO): d 0.77 (3H, d, J=7.0 Hz), 0.93 (3H, s), 1.08
(3H, s), 1.69 (3H, s), 1.80 (1H, m), 1.90±2.10 (3H, m), 2.70
(1H, m), 4.50 (1H, brs), 4.60 (2H, s), 5.24 (1H, brs), 5.92 (1H,
brs), 6.10 (1H, brs), 7.86 (1H, s). 3 (clear oil, CDCl3): d 0.81
(3H, d, J=6.5 Hz), 0.96 (3H, s), 0.98 (3H, s), 1.08±1.34 (4H,
m), 1.69 (3H, s), 1.94±2.00 (3H, m), 2.10 (2H, m), 4.67 (2H, s),
4.80 (1H, m), 5.29 (1H, s), 6.06 (1H, s), 6.22 (1H, s). 4 (clear
oil, CDCl3): d 0.93 (3H, d, J=6.5 Hz), 0.97 (3H, s), 1.69 (3H,
s), 1.85 (1H, m), 1.96 (2H, m), 2.09±2.17 (2H, m), 4.67 (2H, s),
4.70 (1H, m), 5.30 (1H, s), 6.05 (1H, s), 6.19 (1H, s). 5 (clear
oil, CDCl3): d 1.00 (3H, s), 1.56±1.67 (2H, m), 4.75 (1H, d,
J=9.0 Hz), 6.00 (1H, brs), 6.14 (1H, brs).
Figure 3. Eect on the cell cycle of HL60 cells.
9. Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am.
Chem. Soc. 1991, 113, 4092.
Acknowledgements
10. Cdc25A phosphatase assay: Catalytic domain protein of
human cdc25A (283-523 aa) was produced from Escherichia
coli strain DH5a using pGEX-2T glutathione-S-transferase
(GST)-fusion protein expression vector (Pharmacia) according
to the instructions provided by the manufacturer. Phosphatase
activity of cdc25A was assayed in 100 mL of buer containg
10 mM HEPES (pH 8.0), 50 mM NaCl, and 1 mM dithio-
threitol (DTT), with 10 mM p-nitrophenol phosphate (Sigma)
as a substrate, using 96-well microtiter plates. Cdc25B phos-
phatase assay was performed in a similar manner as above.
11. In vitro antitumor activity evalution: The cells (SBC-5 and
HL60) were incubated with the test compound at various
concentrations for 72 h. The IC50 value was de®ned as the
drug concentration needed to cause 50% inhibition of cell
growth with respect to the control.
This work was supported in part by a Grant-in-Aid for
Scienti®c Research from the Ministry of Education,
Science, Sports and Culture, Japan.
References and Notes
1. Gunesekera, S. P.; McCarthy, P. J.; Kelly-Borges, M.;
Lobkovsky, E.; Clardy, J. J. Am. Chem. Soc. 1996, 118, 8759.
2. (a) Jinno, S.; Suto, K.; Nagata, A.; Igarashi, M.; Kanaoka,
Y.; Nojima, H.; Okayama, H. EMBO J. 1994, 13, 1549. (b)
Homann, I. ; Draetta, G.; Karsenti, E. EMBO J. 1994, 13, 4302.
3. (a) Galaktionov, K.; Lee, A. K.; Eckstein, J.; Draetta, G.;
Meckler, J.; Loda, M.; Beach, D. Science 1995, 269, 1575. (b)
Gasparotto, D.; Maestro, R.; Piccinin, S.; Vukosavljievic, T.;
Barzan, L.; Sulfaro, S.; Boiocchi, M. Cancer Res. 1997, 57, 2366.
4. Corey, E. J.; Roberts, B. E. J. Am. Chem. Soc. 1997, 119,
12425.
12. Flow cytometric analysis: HL60 cells were treated with
compounds for 20 h at various concentrations. Cell cycle dis-
tributions were determined using a Becton Dickinson ¯uores-
cence-activated cell analyzer. Data were interpreted using the
ModiFit LT software provided by the manufacturer.