SCHEME 1
Str a igh tfor w a r d Syn th esis of Sp h in ga n in es
via a Ser in e-d er ived Wein r eb Am id e
Regina C. So, Rachel Ndonye, Douglas P. Izmirian,
Stewart K. Richardson, Robyn L. Guerrera, and
Amy R. Howell*
Department of Chemistry, University of Connecticut,
Storrs, Connecticut 06269-3060
amy.howell@uconn.edu
Received November 18, 2003
at C4 of the sphingoid base),9 although it is obvious that
sphinganines are available in only one step from the
corresponding sphingosines by reduction. Sphinganines
have been synthesized from sugars,10,11 from the amino
acid, serine,12-17 and from racemic precursors by a variety
of asymmetric strategies.18-22 In general, the most com-
mon and straightforward syntheses exploit serine deriva-
tives, with routes from serine to the sphinganines
generally being six or more steps. By contrast, our
current approach to sphinganines 7 is a four-step, three-
purification procedure from commercially available Boc-
serine (Scheme 1).
Our initial plan for enhancing the efficiency of sphin-
ganine synthesis was to circumvent the modest meth-
ylenation yield in our previous approach (i.e., conversion
of 1 to 2) by directly reacting lactone 1, available in one
step from Boc-serine,23 with a Grignard or lithium
reagent. Not unexpectedly, even with sub-stoichiometric
amounts of the organometallic reagent, yields were low,
and the product ketones were contaminated with difficult
to separate tertiary alcohols. However, lactone 1 could
be converted in high yield to Weinreb amide 4. A
literature search revealed that 4 could be prepared
directly from Boc-serine.24 In fact, using the method
described, no purification of 4 was required. When 4 was
treated with excess n-BuLi (3.5 equiv) at -78 °C, ketone
5a was isolated in 67% yield. Reaction with excess,
commercially available tetradecylmagnesium chloride
Abstr a ct: Sphinganines can be synthesized in just three
steps from easily prepared serine-derived Weinreb amide 4.
Pre-deprotonation of the acidic (N-H and O-H) protons of
4 allows for its efficient conversion to amino ketones 5. Such
ketones can be selectively reduced to either erythro- or threo-
sphinganines. Partially protected sphinganines 11 are also
readily accessible in five steps from 4. Thus, Weinreb amide
4 represents one of the most versatile templates described
to date for sphinganine synthesis.
We are interested in glycosphingolipids because of their
ability to modulate immune responses.1-3 For example,
the â-galactosyl ceramide, plakoside A, isolated from the
marine sponge Plakortis simplex, was found to be a
noncytotoxic immunosuppressant.4,5 On the other hand,
KRN7000, an R-galactosyl ceramide identified from SAR
studies at Kirin Brewery, has been shown to be a potent
activator of the immune system.6,7 The preparation of the
sphingoid base represents one of the major challenges
in the synthesis of glycosphingolipids. We recently de-
scribed the exploitation of serine-derived 1,5-dioxaspiro-
[3.2]hexane 3 as a template for the construction of both
aminodiol and aminotriol sphingoid bases, illustrated by
the conversion of 3 to D-erythro-dihydrosphingosine and
D-xylo-phytosphingosine (Figure 1).8 In this paper, we
describe a more direct route to dihydrosphingosines
(sphinganines) from serine-derived Weinreb amide 4.
This approach (Scheme 1) represents one of the most
versatile, convenient, and direct methods reported to date
for the preparation of sphinganines.
(9) Koskinen, P. M.; Koskinen, A. M. P. Synthesis 1998, 1075-1091.
(10) Wild, R.; Schmidt, R. R. Liebigs Ann. 1995, 755-764.
(11) Reist, E. J .; Christie, P. H. J . Org. Chem. 1970, 35, 3521-3524.
(12) Cook, G. R.; Pararajasingham, K. Tetrahedron Lett. 2002, 43,
9027-9029.
(13) Azuma, H.; Tamagaki, S.; Ogino, K. J . Org. Chem. 2000, 65,
3538-3541.
(14) De J onghe, S.; Van Overmeire, I.; Poulton, S.; Hendrix, C.;
Busson, R.; Van Calenbergh, S.; De Keukeleire, D.; Spiegel, S.;
Herdewijn, P. Bioorg. Med. Chem. Lett. 1999, 9, 3175-3180.
(15) Thum, O.; Hertwick, C.; Simon, H.; Boland, W. Synthesis 1999,
2145-2150.
(16) Hoffman, R. V.; Tao, J . J . Org. Chem. 1998, 63, 3979-3985.
(17) Newman, H. J . Org. Chem. 1974, 39, 100-102.
(18) Fernandes, R. A.; Kumar, P. Eur. J . Org. Chem. 2000, 3447-
3449.
(19) Kobayashi, S.; Furuta, T. Tetrahedron 1998, 54, 10275-10294.
(20) Masui, M.; Shioiri, T. Tetrahedron Lett. 1998, 39, 5199-5200.
(21) Ishizuka, T.; Morooka, K.; Ishibuchi, S.; Kunieda, T. Hetero-
cycles 1996, 42, 837-848.
(22) Roush, W. R.; Adam, M. A. J . Org. Chem. 1985, 50, 3752-3757.
(23) Pansare, S. V.; Arnold, L. D.; Vederas, J . C. Org. Synth. 1992,
70, 10-17.
(24) Collier, P. N.; Campbell, A. D.; Patel, I.; Raynham, T. M.; Taylor,
R. J . K. J . Org. Chem. 2002, 67, 1802-1815.
Literature syntheses of sphinganines are not as abun-
dant as those for sphingosines (which have a double bond
(1) Merrill, A. H., J r.; Sweeley, C. C. In Biochemistry of Lipids,
Lipoproteins and Membranes; Vance, D. E., Vance, J ., Eds.; Elsevier:
Amsterdam, 1996; Vol. 31, pp 309-339.
(2) Hannun, Y. A. Sphingolipid-Mediated Signal Transduction; R.
G. Landes Co.: Austin, 1997.
(3) Porcelli, S. A.; Modlin, R. L. Annu. Rev. Immunol. 1999, 17, 297-
329.
(4) Nicolaou, K. C.; Li, J .; Zenke, G. Helv. Chim. Acta 2000, 83,
1977-2006.
(5) Costantino, V.; Fattorusso, E.; Mangoni, A.; Di Rosa, M.; Ianaro,
A. J . Am. Chem. Soc. 1997, 119, 12465-12470.
(6) Kawano, T.; Cui, J .; Koezuka, Y.; Toura, I.; Kaneko, Y.; Motoki,
K.; Ueno, H.; Nakagawa, R.; Sato, H.; Kondo, E.; Koseki, H.; Taniguchi,
M. Science 1997, 278, 1626-1629.
(7) Morita, M.; Motoki, K.; Akimoto, K.; Natori, T.; Sakai, T.; Sawa,
E.; Yamaji, K.; Koezuka, Y.; Kobayashi, E.; Fukushima, H. J . Med.
Chem. 1995, 38, 2176-2187.
(8) Ndakala, A. J .; Hashemzadeh, M.; So, R. C.; Howell, A. R. Org.
Lett. 2002, 4, 1719-1722.
10.1021/jo030355b CCC: $27.50 © 2004 American Chemical Society
Published on Web 04/08/2004
J . Org. Chem. 2004, 69, 3233-3235
3233