W. Wang et al. / Tetrahedron Letters 42 (2001) 3159–3161
3161
In conclusion, we have developed an efficient approach
to the synthesis of enantiopure indolizidinone amino
acids 1. In this approach, the key intermediates 5a and
5b, with different stereochemical configurations, were
efficiently constructed from the same precursor via
asymmetric hydrogenations using Burk’s Rh(I)-based
catalysts with different chrial ligands (S,S) or (R,R)
Et-DUPHOS in high stereoselectivity. This method can
be further exploited for the synthesis of alkyl-substi-
tuted indolizidinone amino acids 1 (Fig. 1).14 The incor-
poration of these molecules into biologically active
a-MSH peptides and the study of structure–activity
relationships are in progress.
3594–3600; (c) Haubner, R.; Schmitt, W.; Holzemann,
G.; Goodman, S. L.; Jonczyk, A.; Kessler, H. J. Am.
Chem. Soc. 1996, 118, 7881–7891; (d) Claridge, T. D. W.;
Hulme, C.; Kelly, R. J.; Lee, V.; Nash, I. A.; Schofield,
C. J. Bioorg. Med. Chem. Lett. 1996, 6, 485–490; (e) Liu,
R.; Dong, D. L.-Y.; Sherlock, R.; Nestler, H. P. Bioorg.
Med. Chem. Lett. 1999, 9, 847–852; (f) Karanewsky, D.
S.; Bai, X.; Linton, S. D.; Krebs, J. F.; Wu, J.; Pham, B.;
Tomaselli, K. J. Bioorg. Med. Chem. Lett. 1998, 8, 2757–
2762.
4. (a) Sawyer, T. K.; Hruby, V. J.; Darman, P. S.; Hadley,
M. E. Proc. Natl. Acad. Sci. USA 1982, 79, 1751–1755;
(b) Al-Obeidi, F.; Hadley, M. E.; Pettitt, B. M.; Hruby,
V. J. J. Am. Chem. Soc. 1989, 111, 3413–3416.
5. A recent example of the synthesis of -substituted pyroglu-
tamic acid derivatives: Soloshonok, V. A.; Cai, C.;
Hruby, V. J. Angew. Chem., Int. Ed. 2000, 39, 2172–2175.
6. Brutcher, Jr., F. V.; Hinney, H. Tetrahedron Lett. 1979,
20, 679–680.
7. Schmidt, U.; Griesser, H.; Leitenberger, V.; Lieberknecht,
A.; Mangold, R.; Meyer, R.; Riedl, B. Synthesis 1992,
487–490.
8. Hiebl, J.; Kollmann, H.; Rovenszky, F.; Winkler, K. J.
Org. Chem. 1999, 64, 1947–1952.
Acknowledgements
This work was supported by US Public Health Service
(DK 17420) and the National Institute of Drug Abuse
(DA 13449). We also thank Professor Dominic V.
McGrath for using his group’s polarimeter. The views
are those of the authors and not necessarily the
USPHS.
9. For a recent review in the applications of asymmetric
hydrogenations using DuPHOS-based ligands: Burk, M.
J. Acc. Chem. Res. 2000, 33, 363–372.
References
10. Compound 5a: [h]2D4 −11.8 (c1.01, CHCl3); 1H NMR
(CDCl3) l 1.59–1.69 (m, 6H), 1.88–1.93 (m, 2H), 3.74 (s,
6H), 3.89 (s, 4H), 4.36 (dd, J1=7.0 Hz, J2=13.0 Hz, 2H),
5.10 (s, 4H), 5.38 (d, J=8.0 Hz, 2H), 7.29–7.37 (m, 10H);
13C NMR (CDCl3) l 26.9, 32.9, 52.5, 53.9, 65.2, 67.1,
110.5, 128.2, 128.3, 128.6, 136.4, 156.1, 172.9. HRMS
(FAB) calcd for C29H37N2O10 573.2448. Found 573.2444.
5b: [h]2D6 −12.1 (c1.20, CHCl3); 1H NMR (500 MHz,
CDCl3) l 159–1.69 (m, 6H), 1.88–1.93 (m, 2H), 3.73 (s,
6H), 3.89 (s, 4H), 4.36 (dd, J1=7.0 Hz, J2=13.5 Hz, 2H),
5.10 (s, 4H), 5.39 (d, J=7.5 Hz, 2H), 7.30–7.35 (m, 10H);
13C NMR (CDCl3) l 26.9, 32.9, 52.5, 53.9, 65.2, 67.1,
110.5, 128.2, 128.3, 128.6, 136.4, 156.1, 172.9; HRMS
(FAB) calcd for C29H37N2O10 573.2448. Found 573.2441.
11. Burk, M. J.; Feaster, J. E.; Nugent, W. A.; Harlow, R. L.
J. Am. Chem. Soc. 1993, 115, 10125–10138.
1. Recent reviews for design and synthesis of ‘dipeptide-turn
mimetics’: (a) Halab, L.; Gosselin, F.; Lubell, W. D.
Biopolym. (Pept. Sci.) 2000, 55, 101–122; (b) Hanessian,
S.; McNaughton-Smith, G.; Lombart, H.-G.; Lubell, W.
D. Tetrahedron 1997, 53, 12789–12854. Reviews for the
applications of peptidomimetics including turn mimetics:
(c) Giannis, A.; Kolter, T. Angew. Chem., Int. Ed. Engl.
1993, 23, 1244–1247; (d) Gante, J. Angew. Chem., Int. Ed.
Engl. 1994, 33, 1699–1720.
2. Reviews regarding conformational and topographical
considerations in designing peptidomimetics including
turn mimetics: (a) Hruby, V. J. Life Sci. 1982, 31, 189–
199; (b) Hruby, V. J.; Al-Obeidi, F.; Kazmierski, W. M.
Biochem. J. 1990, 268, 249–262; (c) Hruby, V. J.; Balse,
P. M. Curr. Top. Med. Chem. 2000, 7, 945–970.
3. Examples for incorporation of turn mimetics into pep-
tides: (a) Dolle, R. E.; Prasad, C. V. C.; Prouty, C. P.;
Salvino, J. M.; Awad, M. M. A.; Schmidt, S. J.; Hoyer,
D.; Ross, T. M.; Graybill, T. L.; Speier, G. J.; Uhl, J.;
Miller, B. E.; Helaszek, C. T.; Ator, M. A. J. Med. Chem.
1997, 40, 1941–1946; (b) Baures, P. W.; Ojala, W. H.;
Costain, W. J.; Ott, M. C.; Pradhan, A.; Gleason, W. B.;
Mishra, R. K.; Johnson, R. L. J. Med. Chem. 1997, 40,
12. Mueller, R.; Revesz, L. Tetrahedron Lett. 1994, 35, 4091–
4092.
13. (a) Lombart, H.-G.; Lubell, W. D. J. Org. Chem. 1994,
59, 6147–6149; (b) Lombart, H.-G.; Lubell, W. D. J. Org.
Chem. 1996, 61, 9437–9446.
14. Polyak, F.; Lubell, W. D. J. Org. Chem. 1998, 63,
5937–5949.
.
.