2162
M. L. Deb, P. J. Bhuyan / Tetrahedron Letters 48 (2007) 2159–2163
2. (a) Gribble, G. W. In Comprehensive Heterocyclic Chem-
R
H
O
istry, 2nd ed.; Pergamon Press: New York, 1996; Vol. 2,
pp 203–257; (b) Snieckus, V. In The Alkaloids; Academic
Press: New York, 1968; Vol. 11, pp 1–33.
O
R2
R2
O
R3
R3
N
3. Gribble, G. W. In Comprehensive Heterocyclic Chemistry,
2nd ed.; Pergamon Press: New York, 1996; Vol. 2, pp 211–
213.
N
+
R1
O
O
N
N
R1
N
O
N
O
H
4. (a) Kam, T. S. In Alkaloids, Chemical and Biological
Perspectives; Pelletier, S. W., Ed.; Pergamon: Amsterdam,
1999; Vol. 4, pp 285–345; (b) Irie, T.; Kubushirs, K.;
Suzuki, K.; Tsukazaki, K.; Umezawa, K.; Nozawa, S.
Anticancer Res. 1999, 31, 3061–3066; (c) Garbe, T. R.;
Kobayashi, M.; Shimizu, N.; Takesue, N.; Ozawa, M.;
Yukawa, H. J. Nat. Prod. 2000, 63, 596–598; (d) Hong, C.;
Firestone, G. L.; Bjeldanes, L. F. Biochem. Pharmacol.
2002, 53, 1085–1097.
5. (a) Lin, C.; Hsu, J.; Sastry, M. N. V.; Fang, H.; Tu, Z.;
Liu, J.; Ching-Fa, Y. Tetrahedron 2005, 61, 11751–11757;
(b) Bartoli, G.; Bartolacci, M.; Bosco, M.; Foglia, G.;
Giuliani, A.; Mareantoni, E.; Sambri, L.; Torregiani, E. J.
Org. Chem. 2003, 68, 4594–4597.
R3
3
R3
R
O
[B]
H
R2
R2
R1
R1
R1
N
H
R1
N
N
H
N
H
H
5
O
1
R
Scheme 3.
6. Anastas, P.; Warner, J. C. In Green Chemistry; Theory and
Practice; Oxford, UK, 1998.
7. (a) Yadav, J. S.; Abraham, S.; Reddy, B. V. S.; Sabitha, G.
Synthesis 2001, 2165–2169; (b) Zhan, Z.-P.; Yang, R.-F.;
Lang, K. Tetrahedron Lett. 2005, 46, 3859–3862; (c) Ji,
S.-J.; Wang, S.-Y. Synlett 2003, 2074–2076.
8. (a) Mori, Y.; Kakumoto, K.; Manabe, K.; Kobayashi, S.
Tetrahedron Lett. 2000, 41, 3107–3111; (b) Manabe, K.;
Mori, Y.; Wekabayashi, T.; Nagayama, S.; Kobayashi, S.
J. Am. Chem. Soc. 2000, 122, 7202–7207.
9. Bartoli, G.; Bartolacci, M.; Bosco, M.; Foglia, G.;
Giuliani, A.; Marcantoni, E.; Sambri, L.; Torregiani, E.
J. Org. Chem. 2003, 68, 4594–4597.
acetonitrile these reactions required 1 h to give similar
results (Table 2).20 As in the three-component reactions,
in entries 14–16 we obtained 4 as minor and 5 as major
products. However, in EtOH or MeOH, we obtained
bisindolylmethanes 5 as major products (70–75%) and
Michael adducts 4 as minor compounds, as rationalized
by the mechanism shown in Scheme 3. The protic sol-
vents help the elimination of 3 and thus enhance the for-
mation of intermediate [B]. This was further confirmed
by refluxing Michael adduct 4 with an equimolar
amount of indole 1 in MeOH for 0.5 h which afforded
80% of bisindolyl methane 5. In the case of formalde-
hyde, when the Michael adduct and indole were heated
in methanol, bisindolylmethane was not formed. Thus,
the non-formation of intermediate [A] in the three-com-
ponent reactions in different solvents is the reason for
the non-formation of product 4.
10. (a) Fisher, E.; Moring, J. R. Ther. Ggw 1903, 44, 97–105;
(b) Bobranski, B. Wiad. Chem. 1977, 31, 231–278; (c)
Gauri, K. K.; Kohlage, H. Chemotherapy 1969, 14, 159–
170; (d) Gauri, K. K.; Rohde, B. Klin. Wochenschr. 1969,
47, 375–379.
11. Tanaka, T.; Toda, F. Chem. Rev. 2000, 100, 1025–1074.
12. (a) Weber, L.; Illegen, K.; Almstetter, M. Synlett 1999,
366–374; (b) Armstrong, R. W.; Combs, A. P.; Tempest,
P. A.; Brown, S. D.; Keating, T. A. Acc. Chem. Rev. 1996,
29, 123–131.
13. (a) Shestopalov, A. M.; Emeliyanova, Y. M.; Shestiopo-
lov, A. A.; Rodinovskaya, L. A.; Niazimbetova, Z. L.;
Evans, D. H. Org. Lett. 2002, 4, 423–425; (b) List, B.;
Castello, C. Synlett 2001, 1687–1689; (c) Nair, V.; Vinod,
A. U.; Rajesh, C. J. Org. Chem. 2001, 66, 4427–4429; (d)
Bagley, M. C.; Cale, J. W.; Bower, J. Chem. Commun.
2002, 1682–1683; (e) Cheng Chen, J. F. M.; Arrhenius, T.;
Nadzen, A. Tetrahedron Lett. 2002, 43, 6293–6295; (f)
Huma, H. Z. S.; Halder, R.; Kalra, S. S.; Das, J.; Iqbal, J.
Tetrahedron Lett. 2002, 43, 64485–64488; (g) Bertozzi, F.;
Gustafsson, M.; Olsson, R. Org. Lett. 2002, 4, 3147–3150;
(h) Li, Y.; Yuan, X.; Ding, K. Org. Lett. 2002, 4, 3309–
3311; (i) Bora, U.; Saikia, A.; Boruah, R. C. Org. Lett.
2003, 5, 435–438; (j) Dallinger, D.; Gorobets, N. Y.;
Kappe, C. O. Org. Lett. 2003, 5, 1205–1208.
14. (a) Bhuyan, P. J.; Boruah, R. C.; Sandhu, J. S. Tetrahe-
dron Lett. 1989, 30, 1421–1422; (b) Deb, M. L.; Bhuyan, P.
J. Tetrahedron Lett. 2006, 47, 1441–1443; (c) Devi, I.;
Bhuyan, P. J. Synlett 2004, 283–286; (d) Devi, I.; Borah,
H. N.; Bhuyan, P. J. Tetrahedron Lett. 2004, 45, 2405–
2408; (e) Devi, I.; Bhuyan, P. J. Tetrahedron Lett. 2004, 45,
8625–8627; (f) Devi, I.; Baruah, B.; Bhuyan, P. J. Synlett
2006, 2593–2596.
In conclusion we have reported the synthesis of some
novel 3-alkylated indoles via three-component reactions
in solvent-free conditions. Moreover, the results demon-
strated a novel uncatalyzed Michael addition of indoles
to an a,b-unsaturated system in a one-pot three-compo-
nent reaction under solvent-free conditions. The mecha-
nism of the three-component reaction was established by
synthesizing the proposed intermediate and by perform-
ing the overall transformation in two steps.
Acknowledgements
We thank the DST, New Delhi, for financial support.
M.L.D. thanks the CSIR (India), for the award of a
Senior Research Fellowship.
References and notes
1. (a) Sundberg, R. J. In The Chemistry of Indoles; Academic
Press: New York, 1970; pp 78–83; (b) Marion, L. In The
Alkaloids. Chemistry and Physiology; Academic Press:
New York, 1952; Vol. 2, pp 371–481.
15. An equimolar amount indole 1a (117 mg, 1 mmol),
benzaldehyde 2a (106 mg, 1 mmol) and N,N-dimethylbar-