Y. Yamamoto et al. / Tetrahedron Letters 50 (2009) 5813–5815
5815
14. For review on guanidine in organic synthesis, see: Ishikawa, T.; Kumamoto, T.
Further elucidating the mechanism of the rearrangement and
expanding the range of substrates are ongoing in our laboratory.
Synthesis 2006, 737–752.
15. Synthesis of N,N0,N00-substituted guanidines from
a
-chlorobenzaldoxime O-
methanesulfonate (1a) (Table 2, entry 4): To 50 mL round flask were added
benzylamine (214 mg, 2 mmol), -chlorobenzaldoxime O-methanesulfonate
a
Acknowledgments
1a (467 mg, 2.0 mmol), THF (10 mL), and TMEDA (256 mg, 2.2 mmol). The
solution was stirred at room temperature for 5 h. n-Butylamine (292 mg,
4 mmol) was added to the reaction mixture, and the mixture was warmed to
50 °C. The reaction mixture was stirred at the same temperature for additional
5 h, and the reaction mixture was directly purified through SiO2 column to give
the desired guanidine as yellow oil (484 mg, 86% yield). 1H NMR (CDCl3,
400 MHz) d 7.39–7.34 (m, 4H), 7.31–7.25 (m, 3H), 6.95 (tt, J = 7.2, 1.2 Hz, 1H),
6.92 (dd, J = 8.0, 1.2 Hz, 2H), 4.39 (s, 2H), 4.21 (br s, 1H), 3.77 (br s, 1H), 3.12 (m,
2H), 1.44 (tt, J = 7.2, 7.2 Hz, 2H), 1.26 (tq, J = 7.2, 7.2 Hz, 2H), 0.87 (t, J = 7.2 Hz,
3H); 13C NMR (CDCl3, 100 MHz) d 151.3, 150.0, 139.1, 129.3, 128.7, 127.4,
127.4, 123.6, 121.6, 46.1, 41.7, 31.8, 20.0, 13.8; IR (neat, cmꢀ1) 2956, 2926,
2861, 1615, 1584, 1516, 1483, 1264, 1135, 1069, 731, 695; HRMS m/z calcd for
C18H24N3: 282.1970; Found: 282.1970.
We thank Dr. Shane W. Krska (MRL) for helpful discussion, and
Dr. Hirokazu Ohsawa (Banyu) for HRMS measurements.
References
1. Tiemann, F. Ber. Dtsch. Chem. Ges. 1891, 24, 4162–4167.
2. For review on the chemistry of amidoximes, see: Eloy, F.; Lenaers, R. Chem. Rev.
1962, 62, 155–183.
3. (a) Partridge, M. W.; Turner, H. A. J. Pharm. Pharmacol. 1953, 5, 103–110; (b)
Partridge, M. W.; Turner, H. A. J. Chem. Soc. 1958, 125, 2086–2092.
4. For reviews on the chemistry of carbodiimides, see: (a) Williams, A.; Ibrahim, I.
T. Chem. Rev. 1981, 81, 589–636; (b) Wanger, K.; Findeisen, K.; Schaefer, W.;
Dietrich, W. Angew. Chem., Int. Ed. Engl. 1981, 20, 819–830; (c) Mikolajczyk, M.;
Kielbasinski, P. Tetrahedron 1981, 37, 233–284.
5. (a) Plapinger, R. F.; Owens, O. O. J. Org. Chem. 1956, 21, 1186–1187; (b) Boyer, J. H.;
Frints, P. J. A. J. Org. Chem. 1970, 35, 2449–2450; (c) Garapon, J.; Sillion, B.;
Bonnier, J. M. Tetrahedron Lett. 1970, 11, 4905–4908; (d) Richter, R.; Tucker, B.;
Ulrich, H. J. Org. Chem. 1983, 48, 1694–1700; (e) Adams, G. W.; Bowie, J. H.; Hayes,
R. N.; Gross, M. L. J. Chem. Soc., Perkin Trans. 2 1992, 897–901; (f) Bakunov, S. A.;
Rukavishnikov, A. V.; Tkachev, A. V. Synthesis 2000, 1148–1159; (g) Yagupolskii,
L. M.; Shelyazhenko, S. V.; Maletina, I. I.; Sokolenko, L. V.; Chernega, A. N.;
Rusanov, E. B.; Tsymbal, I. F. J. Fluorine Chem. 2007, 128, 515–523.
16. Synthesis of N,N0,N00-substituted guanidine from
benzaldoxime O-methanesulfonate (1b) (Table 2 entry 6): To 50 mL round flask
were added benzylamine (214 mg, 2.0 mmol), -chloro(2-chlorophenyl)-
a-chloro(2-chlorophenyl)-
a
carboxaldoxime O-methanesulfonate 1b (536 mg, 2.0 mmol), THF (10 mL),
and TMEDA (256 mg, 2.2 mmol). The solution was stirred at room temperature
for 5 h. Pyrrolidine (280 mg, 4 mmol) was added to the reaction mixture, and
the mixture was warmed to 70 °C. The reaction mixture was stirred at the
same temperature for additional 5 h, and the reaction mixture was directly
purified through SiO2 column to give the desired guanidine as yellow oil
(446 mg, 71% yield). 1H NMR (CDCl3, 400 MHz) d 7.33–7.32 (m, 4H), 7.30–7.26
(m, 2H), 7.07 (td, J = 7.6, 1.6 Hz, 1H), 6.89 (dd, J = 8.0, 1.6 Hz, 1H), 6.76 (td,
J = 8.0, 1.6 Hz, 1H), 4.36 (s, 2H), 3.27–3.23 (m, 4H), 1.85–1.82 (m, 4H); 13C
NMR (CDCl3, 100 MHz) d 152.1, 139.4, 129.2, 128.6, 127.8, 127.3, 127.0, 124.3,
120.7, 47.9, 47.7, 25.5; IR (neat, cmꢀ1) 2966, 2869, 1597, 1568, 1511, 1466,
1351, 1029, 745, 697; HRMS m/z calcd for C18H21N3Cl: 314.1424; found:
314.1429.
6. (a) Yamamoto, Y.; Mizuno, H.; Tsuritani, T.; Mase, T. J. Org. Chem. 2009, 74,
1394–1396; (b) Yamamoto, Y.; Tsuritani, T.; Mase, T. Tetrahedron Lett. 2008, 49,
876–878.
7. (a) Smith, P. A.; Leon, E. J. Am. Chem. Soc. 1958, 80, 4647–4654; (b) Grenda, V. J.;
Joens, R. E.; Gal, G.; Sletzinger, M. J. Org. Chem. 1965, 30, 259–261; (c) Sauer, J.;
Mayer, K. K. Tetrahedron Lett. 1968, 9, 325–330; (d) Houghton, P. G.; Pipe, D. F.;
Rees, C. W. J. Chem. Soc., Perkin Trans. 1 1975, 1964–1969; (e) Ichikawa, M.;
Hisano, T. Chem. Pharm. Bull. 1982, 30, 2996–3003; (f) Ramsden, C. A.; Rose, H.
L. J. Chem. Soc., Perkin Trans. 1 1995, 615–617; (g) Ramsden, C. A.; Rose, H. L. J.
Chem. Soc., Perkin Trans. 1 1997, 2319–2327. and references cited therein.
8. (a) Kim, T. H.; Lee, N.; Lee, G.-J.; Kim, J. M. Tetrahedron 2001, 57, 7137–7141; (b)
Heinelt, U.; Schultheis, D.; Jäger, S.; Lindenmaier, M.; Pollex, A.; Beckmann, H. S.
g. Tetrahedron 2004, 60, 9883–9888.
17. Synthesis of N,N0,N00-substituted guanidine from
carboxaldoxime O-methanesulfonate (1c) (Table 2, entry 8): To 50 mL round
flask were added -chloro(2-pyridyl)carboxaldoxime O-methanesulfonate 1c
a-chloro(2-pyridyl)-
a
(469 mg, 2.0 mmol), THF (10 mL), and TMEDA (256 mg, 2.2 mmol). The
mixture was cooled to 0 °C, and n-butylamine (146 mg, 2.0 mmol) was added
to the mixture. The mixture was warmed to room temperature, and was stirred
at the same temperature for 30 min. Benzylamine (428 mg, 2.0 mmol), DMF
(5 mL), and DBU (731 mg, 4.8 mmol) were added to the mixture, and the
mixture was stirred at 35 °C for 5 h. The reaction mixture was directly purified
through SiO2 column to give the desired guanidine as a white crystal (446 mg,
87% yield, mp 78 °C). 1H NMR (CDCl3, 400 MHz) d 8.09 (ddd, J = 5.2, 2.0, 0.8 Hz,
1H), 7.45 (ddd, J = 9.2, 7.2, 2.4 Hz, 1H), 7.40–7.33 (m, 4H), 7.31–7.26 (m, 1H),
6.89 (d, J = 9.2 Hz, 1H), 6.66 (ddd, J = 7.2, 5.2, 0.8 Hz, 1H), 4.56 (s, 2H), 3.23 (br s,
2H), 1.54 (tt, J = 7.6, 7.6 Hz, 2H), 1.33 (tq, J = 7.6, 7.6 Hz, 2H), 0.90 (t, J = 7.6 Hz,
3H); 13C NMR (CDCl3, 100 MHz) d 163.4, 155.4, 145.3, 139.1, 136.9, 128.7,
127.4, 127.3, 120.2, 114.4, 45.3, 40.9, 31.6, 20.1, 13.7; IR (neat, cmꢀ1) 2953,
1558, 1506, 1429, 1355, 1147, 784, 730; HRMS m/z calcd for C17H23N4:
283.1923; found: 283.1930.
9. The reaction was monitored by HPLC, and indicated the formation of
amidoxime O-methanesulfonate 3b.
10. It is reported that DBU is superior to TEA for Hofmann rearrangement: Huang,
X.; Seid, M.; Keillor, J. F. J. Org. Chem. 1997, 62, 7495–7496.
11. (a) Renflow, W. B.; Hauser, C. R. J. Am. Chem. Soc. 1937, 59, 2308–2314; (b)
Bright, R.; Hauser, C. R. J. Am. Chem. Soc. 1939, 61, 618–629; (c) Imamoto, T.;
Tsuno, Y.; Yukawa, Y. Bull. Chem. Soc. Jpn. 1971, 44, 1632–2638.
12. For recent advances in synthesis of substituted guanidines, see: (a) Linton, B.
R.; Carr, A. J.; Orner, B. P.; Hamilton, A. D. J. Org. Chem. 2000, 65, 1566–1568; (b)
Powell, D. A.; Ramsden, P. D.; Batey, R. A. J. Org. Chem. 2003, 68, 2300–2309; (c)
Ong, T.-G.; Yap, G. P. A.; Richeson, D. S. J. Am. Chem. Soc. 2003, 125, 8100–8101;
(d) Zhang, W.-X.; Hou, Z. Org. Biomol. Chem. 2008, 6, 1720–1730.
13. For review on guanidine in biologically active compounds, see: Berlinck, R. G.
S.; Burtoloso, A. C. B.; Kossuga, M. H. Nat. Prod. Rep. 2008, 25, 919–954.
18. tBu-substituted
bearing aliphatic substituent that Tiemann rearrangement proceeded. The
reaction of cyclohexyl or nBu-substituted
-chloroaldoxime methanesulfonate
a-chloroaldoxime methanesulfonate 1e was the only example
a
with benzylamine gave only the corresponding amidoxime O-methane-
sulfonate, and no rearrangement occurred under our reaction conditions.