186
W. Luo et al. / Journal of Catalysis 301 (2013) 175–186
choice. The non-acidic catalyst materials selectively gave
c-
References
valerolactone (GVL) as the main and final product, while the
zeolite-supported acidic catalyst proved capable of the direct con-
version of LA to pentanoic acid (PA) under relatively mild condi-
tions in dioxane as solvent. The strongly acidic sites on the
support material accelerate the LA to GVL conversion and are
essential for the subsequent, most difficult step in the sequence,
that is, the ring-opening step in the conversion of GVL to PA. PA
can also be obtained under more severe conditions, using 2-ethyl-
hexanoic acid or neat LA as solvent, but yields dropped as a result
of gradual deactivation of the zeolite-supported catalysts.
Although many factors may influence the deactivation of the cata-
lyst material, pyridine adsorption and solid-state 27Al NMR data
clearly show that the deactivation of the catalyst materials can
mainly be attributed to loss of acid sites by dealumination. It
was found that H-ZSM5 was more resistant to dealumination than
H-b. Most coke is formed on the zeolite-supported catalyst materi-
als in neat LA, with XRD indicating preferential coke buildup in the
zigzag channels of H-ZSM5. The results also show that angelicalac-
tone (AL) is involved as an intermediate in the hydrogenation reac-
tion and that it is a direct precursor for the coke that is deposited
mostly on the acidic catalysts. Ru/TiO2 proved to be remarkably
stable and selective for GVL formation, also in the reactions in neat
LA with very limited coke formation, sintering and leaching of
ruthenium being observed. Further studies on the stability of the
mainly the acid sites in the zeolite-supported catalysts, under the
highly polar and corrosive conditions of LA conversion, should im-
prove the performance of these first promising examples for the di-
rect conversion of LA to PA.
[1] B. Girisuta, L.P.B.M. Janssen, H.J. Heeres, Chem. Eng. Res. Des. 84 (2006) 339–
349.
[2] D.W. Rackemann, W.O.S. Doherty, Biofuels, Bioprod. Biorefin. 5 (2011) 198–
214.
[3] A. Corma, S. Iborra, A. Velty, Chem. Rev. 107 (2007) 2411–2502.
[4] J.J. Bozell, L. Moens, D.C. Elliott, Y. Wang, G.G. Neuenscwander, S.W. Fitzpatrick,
R.J. Bilski, J.L. Jarnefeld, Resour. Conserv. Recyc. 28 (2000) 227–239.
[5] I.T. Horvath, H. Mehdi, V. Fabos, L. Boda, L.T. Mika, Green Chem. 10 (2008) 238–
242.
[6] J.-P. Lange, R. Price, P.M. Ayoub, J. Louis, L. Petrus, L. Clarke, H. Gosselink,
Angew. Chem. Int. Ed. 49 (2010) 4479–4483.
[7] J.C. Serrano-Ruiz, D. Wang, J.A. Dumesic, Green Chem. 12 (2010) 574–577.
[8] Z.-p. Yan, L. Lin, S. Liu, Energy Fuels 23 (2009) 3853–3858.
[9] M.G. Al-Shaal, W.R.H. Wright, R. Palkovits, Green Chem. 14 (2012) 1260–1263.
[10] L.E. Manzer, Appl. Catal. A: Gen. 272 (2004) 249–256.
[11] R.A. Bourne, J.G. Stevens, J. Ke, M. Poliakoff, Chem. Commun. (2007) 4632–
4634.
[12] D.C. Elliott, J.G. Frye, US Patent 5883266, Battelle Memorial Institute, 1999.
[13] J.-P. Lange, US Patent 2011/0112326, Shell International B.V., 2011.
[14] P.J. Van den Brink, K.L. Von Hebel, J.-P. Lange, L. Petrus, WO/2006/[067171],
Shell International B.V., 2006.
[15] J.Q. Bond, D.M. Alonso, D. Wang, R.M. West, J.A. Dumesic, Science 327 (2010)
1110–1114.
[16] J.Q. Bond, D.M. Alonso, R.M. West, J.A. Dumesic, Langmuir 26 (2010) 16291–
16298.
[17] E. Lippmaa, A. Samoson, M. Magi, J. Am. Chem. Soc. 108 (1986) 1730–1735.
[18] G.L. Woolery, G.H. Kuehl, H.C. Timken, A.W. Chester, J.C. Vartuli, Zeolites 19
(1997) 288–296.
[19] A. Primo, P. Concepcion, A. Corma, Chem. Commun. 47 (2011) 3613–3615.
[20] P.M. Ayoub, J.-P. Lange, WO2008/142127, Shell International B.V., 2008.
[21] D. Di Mondo, D. Ashok, F. Waldie, N. Schrier, M. Morrison, M. Schlaf, ACS Catal.
1 (2011) 355–364.
[22] J. Kornatowski, W.H. Baur, G. Pieper, M. Rozwadowski, W. Schmitz, A.
Cichowlas, J. Chem. Soc., Faraday Trans. 88 (1992) 1339–1343.
[23] C.S. Triantafillidis, A.G. Vlessidis, L. Nalbandian, N.P. Evmiridis, Micropor.
Mesopor. Mater. 47 (2001) 369–388.
[24] T. Barzetti, E. Selli, D. Moscotti, L. Forni, J. Chem. Soc., Faraday Trans. 92 (1996)
1401–1407.
[25] E.P. Parry, J. Catal. 2 (1963) 371–379.
Acknowledgments
[26] T. Yashima, N. Hara, J. Catal. 27 (1972) 329–333.
[27] A. Martin, U. Wolf, S. Nowak, B. Lücke, Zeolites 11 (1991) 85–87.
[28] J.P. Marques, I. Gener, P. Ayrault, J.C. Bordado, J.M. Lopes, F. Ramôa Ribeiro, M.
Guisnet, Micropor. Mesopor. Mater. 60 (2003) 251–262.
[29] D. Freude, H. Ernst, I. Wolf, Solid State Nucl. Magn. Reson. 3 (1994) 271–
286.
[30] E. Brunner, H. Ernst, D. Freude, T. Fröhlich, M. Hunger, H. Pfeifer, J. Catal. 127
(1991) 34–41.
[31] J. Kanellopoulos, A. Unger, W. Schwieger, D. Freude, J. Catal. 237 (2006) 416–
425.
The authors gratefully thank the Smart Mix Program of the
Netherlands Ministry of Economic Affairs and the Netherlands
Ministry of Education, Culture and Science within the framework
of the CatchBio Program. Cor van de Spek is acknowledged for
the TEM measurements. The authors thank the CatchBio User Com-
mittee for their valuable suggestions and discussions. Support of
NWO for the ‘‘Solid-State NMR facility for Advanced Materials Sci-
ence’’ is gratefully acknowledged. We would like to thank Hans
Janssen, Gerrit Janssen and Jan van Os for technical support.
[32] Z. Yu, A. Zheng, Q. Wang, L. Chen, J. Xu, J.-P. Amoureux, F. Deng, Angew. Chem.
Int. Ed. 49 (2010) 8657–8661.
[33] E.R.H. van Eck, J.A.Z. Pieterse, A.P.M. Kentgens, Solid State Nucl. Magn. Reson.
39 (2011) 99–105.
[34] J.-P. Gilson, G.C. Edwards, A.W. Peters, K. Rajagopalan, R.F. Wormsbecher, T.G.
Roberie, M.P. Shatlock, J. Chem. Soc., Chem. Commun. (1987) 91–92.
[35] J. Chen, T. Chen, N. Guan, J. Wang, Catal. Today 93–95 (2004) 627–630.
[36] M. Muller, G. Harvey, R. Prins, Micropor. Mesopor. Mater. 34 (2000) 135–
147.
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
[37] L.E. Manzer, US Patent 2006100449, E. I. Du Pont de Nemours and Company,
2006.