Journal of the American Chemical Society
Article
(6) (a) Hayashi, M.; Inubushi, A.; Mukaiyama, T. Chem. Lett. 1987,
16, 1975−1978. (b) Yao, L.-F.; Shi, M. Org. Lett. 2007, 9, 5187−5190.
(7) Short review: Cozzi, P. G.; Benfatti, F. Angew. Chem., Int. Ed.
2010, 49, 256−259.
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,
K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,
N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
(8) Relevant studies on intermolecular substitution reactions
proceeding via chiral benzylic, allylic, and cyclopropylalkyl cations:
(a) Ishikawa, T.; Aikawa, T.; Mori, Y.; Saito, S. Org. Lett. 2004, 6,
̈
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
1369−1372. (b) Muhlthau, F.; Schuster, O.; Bach, T. J. Am. Chem. Soc.
̈
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09,
Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.
(20) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648−5652. (b) Lee,
C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys.
1988, 37, 785−789.
(21) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215−241.
(22) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys.
2010, 132, 154104.
2005, 127, 9348−9349. (c) Muhlthau, F.; Stadler, D.; Goeppert, A.;
̈
Olah, G. A.; Prakash, G. K. S.; Bach, T. J. Am. Chem. Soc. 2006, 128,
9668−9675. (d) Stadler, D.; Bach, T. Chem.Asian J. 2008, 3, 272−
284. (e) Chung, J. Y. L.; Mancheno, D.; Dormer, P. G.; Variankaval,
N.; Ball, R. G.; Tsou, N. N. Org. Lett. 2008, 10, 3037−3040.
(f) Stadler, D.; Bach, T. Angew. Chem., Int. Ed. 2008, 47, 7557−7559.
(g) Stadler, D.; Goeppert, A.; Rasul, G.; Olah, G. A.; Prakash, G. K. S.;
Bach, T. J. Org. Chem. 2009, 74, 312−318. (h) Rubenbauer, P.; Bach,
T. Chem. Commun. 2009, 2130−2132. (i) Stadler, D.; Bach, T. J. Org.
Chem. 2009, 74, 4747−4752. (j) Zhang, Z.; Shi, M. Chem.Eur. J.
2010, 16, 7725−7729. (k) Sparr, C.; Gilmour, R. Angew. Chem., Int.
Ed. 2010, 49, 6520−6523. (l) Wilcke, D.; Herdtweck, E.; Bach, T.
Chem.Asian J. 2012, 7, 1372−1382. (m) Wilcke, D.; Bach, T. Org.
Biomol. Chem. 2012, 10, 6498−6503. (n) Corbett, M. T.; Uraguchi, D.;
Ooi, T.; Johnson, J. S. Angew. Chem., Int. Ed. 2012, 51, 4685−4689.
(9) Reviews: (a) O’Brien, A. G. Tetrahedron 2011, 67, 9639−9667.
(23) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B
2009, 113, 6378−6396.
́
(24) Legault, C. Y. CYLview, 1.0b; Universite de Sherbrooke:
(25) For reviews, see: (a) Carbocation Chemistry; Olah, G. A.,
Prakash, G. K. S., Eds.; Wiley: Hoboken, NJ, 2004. (b) Saunders, M.;
́ ́
Jimenez-Vazquez, H. A. Chem. Rev. 1991, 91, 375−397.
(26) Olah, G. A.; Kuhn, S. J.; Tolgyesi, W. S.; Baker, E. B. J. Am.
Chem. Soc. 1962, 84, 2733−2740.
́
(b) Guillarme, S.; Ple, K.; Banchet, A.; Liard, A.; Haudrechy, A. Chem.
(27) (a) Servis, K. L.; Shue, F.-F. J. Am. Chem. Soc. 1980, 102, 7233−
7240. (b) Siehl, H.-U.; Kaufmann, F.-P.; Hori, K. J. Am. Chem. Soc.
1992, 114, 9343−9349.
Rev. 2006, 106, 2355−2403. (c) Mengel, A.; Reiser, O. Chem. Rev.
1999, 99, 1191−1223. (d) Reetz, M. T. Angew. Chem., Int. Ed. 1984,
23, 556−569.
(28) Jost, R.; Sommer, J.; Engdahl, C.; Ahlberg, P. J. Am. Chem. Soc.
1980, 102, 7663−7667.
(10) Rubenbauer, P.; Herdtweck, E.; Strassner, T.; Bach, T. Angew.
Chem., Int. Ed. 2008, 47, 10106−10109.
(29) A reviewer has suggested that the observed line broadening
could be due to protonation of the methoxy (in cation 15g) and 2,6-
dichlorobenzoxy (in cations 15j and 15k) groups, which would result
in a dication. However, on the basis of the low 13C NMR (<4 ppm)
and 1H NMR (<0.13 ppm) chemical-shift change for the methoxy and
benzylic methylene groups, a protonation seems unlikely.
(30) For NMR studies of stable propargylic cations, see: (a) Pittman,
C. U.; Olah, G. A. J. Am. Chem. Soc. 1965, 87, 5632−5637. (b) Olah,
G. A.; Spear, R. J.; Westerman, P. W.; Denis, J.-M. J. Am. Chem. Soc.
1974, 96, 5855−5859. (c) Prakash, G. K. S.; Krishnamurthy, V. V.;
Olah, G. A.; Farnum, D. G. J. Am. Chem. Soc. 1985, 107, 3928−3935.
(d) Krishnamurthy, V. V.; Prakash, G. K. S.; Iyer, P. S.; Olah, G. A. J.
Am. Chem. Soc. 1986, 108, 1575−1579. (e) Olah, G. A.; Krishnamurti,
R.; Prakash, G. K. S. J. Org. Chem. 1990, 55, 6061−6062.
(31) (a) Lambert, J. B.; Johnson, D. H. J. Am. Chem. Soc. 1968, 90,
1349−1350. (b) Wan, S.; Gunaydin, H.; Houk, K. N.; Floreancig, P. E.
J. Am. Chem. Soc. 2007, 129, 7915−7923. (c) Schubert, J. W.; Dudley,
T. J.; Ohta, B. K. J. Org. Chem. 2007, 72, 2452−2459.
(11) For a review on applications of carbocation chemistry in organic
synthesis, see: Naredla, R. R.; Klumpp, D. A. Chem. Rev. 2013, 113,
6905−6948.
(12) Hofle, G.; Steglich, W.; Vorbruggen, H. Angew. Chem., Int. Ed.
̈
̈
1978, 17, 569−583.
(13) (a) Tanaka, K.; Shoji, T. Org. Lett. 2005, 7, 3561−3563.
(b) Chandrasekhar, S.; Saritha, B.; Jagadeshwar, V.; Prakash, S. J.
Tetrahedron: Asymmetry 2006, 17, 1380−1386.
(14) (a) Lodge, E. P.; Heathcock, C. H. J. Am. Chem. Soc. 1987, 109,
3353−3361. (b) Quast, H.; Leybach, H. Chem. Ber. 1991, 124, 849−
̀
859. (c) Koch, C.-J.; Simonyiova, S.; Pabel, J.; Kartner, A.; Polborn, K.;
̈
Wanner, K. T. Eur. J. Org. Chem. 2003, 1244−1263. (d) Robertson, J.;
Hall, M. J.; Green, S. P. Tetrahedron 2009, 65, 5541−5551.
(15) (a) Chan, T. H.; Paterson, I.; Pinsonnault, J. Tetrahedron Lett.
1977, 18, 4183−4186. (b) Reetz, M. T.; Maier, W. F. Angew. Chem.,
Int. Ed. 1978, 17, 48−49. (c) Reetz, M. T.; Maier, W. F.;
Chatziiosifidis, I.; Giannis, A.; Heimbach, H.; Lowe, U. Chem. Ber.
̈
1980, 113, 3741−3757.
(32) Anh, N. T.; Eisenstein, O. Nouv. J. Chim. 1977, 1, 61−70.
(33) For key references regarding the alternative Cornforth model,
see: (a) Cornforth, J. W.; Cornforth, R. H.; Mathew, K. K. J. Chem.
Soc. 1959, 112−127. (b) Gung, B. W.; Xue, X. Tetrahedron: Asymmetry
2001, 12, 2955−2959. (c) Evans, D. A.; Cee, V. J.; Siska, S. J. J. Am.
Chem. Soc. 2006, 128, 9433−9441.
(16) Recent reviews and monographs: (a) Ollevier, T. Org. Biomol.
Chem. 2013, 11, 2740−2755. (b) Bismuth-Mediated Organic Reactions
(Topics in Current Chemistry); Ollevier, T., Ed.; Springer: Heidelberg,
Germany, 2012; Vol. 311. (c) Bothwell, J. M.; Krabbe, S. W.; Mohan,
R. S. Chem. Soc. Rev. 2011, 40, 4649−4707. (d) Kobayashi, S.; Sugiura,
M.; Kitagawa, H.; Lam, W. W.-L. Chem. Rev. 2002, 102, 2227−2302.
(17) (a) Zschage, O.; Hoppe, D. Tetrahedron 1992, 48, 5657−5666.
(b) Kerrigan, N. J.; Hutchison, P. C.; Heightman, T. D.; Procter, D. J.
Org. Biomol. Chem. 2004, 2, 2476−2482. (c) Zhang, Y.; Wang, Y.; Dai,
W.-M. J. Org. Chem. 2006, 71, 2445−2455. (d) Hanessian, S.; Chahal,
N.; Giroux, S. J. Org. Chem. 2006, 71, 7403−7411. (e) Vogel, J. C.;
Butler, R.; Procter, D. J. Tetrahedron 2008, 64, 11876−11883.
(18) (a) Jacobi, P. A.; Brielmann, H. L.; Cann, R. O. J. Org. Chem.
1994, 59, 5305−5316. (b) Yoshimatsu, M.; Otani, T.; Matsuda, S.;
Yamamoto, T.; Sawa, A. Org. Lett. 2008, 10, 4251−4254.
(19) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;
G
dx.doi.org/10.1021/ja411772n | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX