Molecules 2021, 26, 303
8 of 9
8.
9.
De Angelis, S.; Celestini, P.; Purgatorio, R.; DeGennaro, L.; Rebuzzini, G.; Luisi, R.; Carlucci, C. Development of a continuous flow
synthesis of propranolol: Tackling a competitive side reaction. J. Flow Chem. 2019, 9, 231–236. [CrossRef]
Ollivier, N.; Toupy, T.; Hartkoorn, R.C.; Desmet, R.; Monbaliu, J.-C.M.; Melnyk, O. Accelerated microfluidic native chemical
ligation at difficult amino acids toward cyclic peptides. Nat. Commun. 2018, 9, 1–12. [CrossRef]
10. Tadele, K.; Verma, S.; Nadagouda, M.N.; Gonzalez, M.A.; Varma, R.S. A rapid flow strategy for the oxidative cyanation of
secondary and tertiary amines via C-H activation. Sci. Rep. 2017, 7, 1–5. [CrossRef]
11. Britton, J.; Raston, C.L. Multi-step continuous-flow synthesis. Chem. Soc. Rev. 2017, 46, 1250–1271. [CrossRef] [PubMed]
12. Wegner, J.; Ceylan, S.; Kirschning, A. Flow Chemistry—A Key Enabling Technology for (Multistep) Organic Synthesis. Adv. Synth.
13. Porta, R.; Benaglia, M.; Puglisi, A. Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products. Org.
Process. Res. Dev. 2016, 20, 2–25. [CrossRef]
14. Snead, D.R.; Jamison, T.F. A Three-Minute Synthesis and Purification of Ibuprofen: Pushing the Limits of Continuous-Flow
Processing. Angew. Chem. Int. Ed. 2015, 54, 983–987. [CrossRef] [PubMed]
15. Adamo, A.; Beingessner, R.L.; Behnam, M.; Chen, J.; Jamison, T.F.; Jensen, K.F.; Monbaliu, J.-C.M.; Myerson, A.S.; Revalor, E.M.;
Snead, D.R.; et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science 2016
,
16. Coley, C.W.; Thomas, D.A.; Lummiss, J.A.M.; Jaworski, J.N.; Breen, C.P.; Schultz, V.; Hart, T.; Fishman, J.S.; Rogers, L.; Gao,
H.; et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 2019, 365, eaax1566.
17. Bédard, A.-C.; Adamo, A.; Aroh, K.C.; Russell, M.G.; Bedermann, A.A.; Torosian, J.; Yue, B.; Jensen, K.F.; Jamison, T.F. Reconfig-
urable system for automated optimization of diverse chemical reactions. Science 2018, 361, 1220–1225. [CrossRef] [PubMed]
18. Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen
Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. [CrossRef]
19. Cao, W.; Dai, F.; Hu, R.; Tang, B.Z. Economic Sulfur Conversion to Functional Polythioamides through Catalyst-Free Multicompo-
nent Polymerizations of Sulfur, Acids, and Amines. J. Am. Chem. Soc. 2019, 142, 978–986. [CrossRef]
20. Chen, L.; Xia, P.; Du, T.; Deng, Y.; Xiao, Y. Catalyst-Free One-Pot Synthesis of Unsymmetrical Five- and Six-Membered Sulfur-
Annulated Heterocyclic Perylene Diimides for Electron-Transporting Property. Org. Lett. 2019, 21, 5529–5532. [CrossRef]
21. Phetsuksiri, B.; Jackson, M.; Scherman, H.; McNeil, M.; Besra, G.S.; Baulard, A.; Slayden, A.R.; DeBarber, A.E.; Barry, C.E., III.;
Baird, M.S.; et al. Unique Mechanism of Action of the Thiourea Drug Isoxyl onMycobacterium tuberculosis. J. Biol. Chem. 2003
,
22. Xiao, S.; Wei, L.; Hong, Z.; Rao, L.; Ren, Y.; Wan, J.; Feng, L. Design, synthesis and algicides activities of thiourea derivatives as
the novel scaffold aldolase inhibitors. Bioorg. Med. Chem. 2019, 27, 805–812. [CrossRef] [PubMed]
23. Wu, J.; Shi, Q.; Chen, Z.; He, M.; Jin, L.; Pan, T. Synthesis and Bioactivity of Pyrazole Acyl Thiourea Derivatives. Molecules 2012
,
24. Worthing, C.R.; Hance, R.J. The Pesticide Manual: A World Compendium, 9th ed.; British Crop Protection Council: Surrey, UK, 1991;
ISBN 9780948404429.
25. Biswas, K.; Greaney, M.F. Insertion of Arynes into Thioureas: A New Amidine Synthesis. Org. Lett. 2011, 13, 4946–4949. [CrossRef]
26. Zhao, J.; Huang, H.; Wu, W.; Chen, H.-J.; Jiang, H. Metal-Free Synthesis of 2-Aminobenzothiazoles via Aerobic Oxidative
Cyclization/Dehydrogenation of Cyclohexanones and Thioureas. Org. Lett. 2013, 15, 2604–2607. [CrossRef]
27. Batey, R.A.; Powell, D.A. A general synthetic method for the formation of substituted 5-aminotetrazoles from thioureas: A
strategy for diversity amplification. Org. Lett. 2000, 2, 3237–3240. [CrossRef]
28. Ghodse, S.M.; Telvekar, V.N. Synthesis of 2-aminothiazole derivatives from easily available thiourea and alkyl/aryl ketones using
aqueous NaICl2. Tetrahedron Lett. 2015, 56, 472–474. [CrossRef]
29. Maddani, M.R.; Prabhu, K.R. A Concise Synthesis of Substituted Thiourea Derivatives in Aqueous Medium. J. Org. Chem. 2010
,
30. Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Highly Enantioselective Conjugate Addition of Nitromethane to Chalcones Using
Bifunctional Cinchona Organocatalysts. Org. Lett. 2005, 7, 1967–1969. [CrossRef]
31. Madarasz, A.; Dósa, Z.; Varga, S.; Soós, T.; Csampai, A.; Pápai, I. Thiourea Derivatives as Brønsted Acid Organocatalysts. ACS
32. Schreiner, P.R. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem. Soc. Rev. 2003, 32, 289–296.
33. Okino, T.; Hoashi, Y.; Takemoto, Y. Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional
Organocatalysts. J. Am. Chem. Soc. 2003, 125, 12672–12673. [CrossRef] [PubMed]
34. Nickisch, R.; Gabrielsen, S.M.; Meier, M.A. Novel Access to Known and Unknown Thiourea Catalyst via a Multicomponent-
Reaction Approach. Chem. Select 2020, 5, 11915–11920. [CrossRef]
35. Nguyen, T.B. Recent Advances in Organic Reactions Involving Elemental Sulfur. Adv. Synth. Catal. 2017, 359, 1066–1130.
36. Nguyen, T.B.; Ermolenko, L.; Retailleau, P.; Al-Mourabit, A. Elemental Sulfur Disproportionation in the Redox Condensation
Reaction betweeno-Halonitrobenzenes and Benzylamines. Angew. Chem. Int. Ed. 2014, 53, 13808–13812. [CrossRef]