2514
C. S. Hamilton et al. / Bioorg. Med. Chem. Lett. 11 (2001) 2511–2514
become ordered on penicillin binding, thus isolating the
active site during catalysis. Further experiments are
required in order to determine whether these residues
are important for efficient coupling of 2-oxoglutarate
conversion to penicillin oxidation.
12. Dourtoglou, V.; Gross, B. Synthesis 1984, 572.
13. Bodanszky, M.; Bodanszky, A. In The Practice of Peptide
Synthesis; Springer: Berlin, 1984; Vol. 22; p 153.
14. 1H NMR (200 MHz, D2O) d 1.35 (3H, s, Me), 1.43 (3H, s,
Me),
1.57
(3H,
s,
Me),
CHCH2CH2CH2CONH), 2.23 (2H, t,
1.46–1.88
(4H, m,
7.0 Hz,
J
CH2CH2CONH), 3.57 (1H, m, HO2CCHNH2), 4.11 (1H, s,
H-3), 5.27 (1H, s, H-5). IR (KBr disc) 1764 cmÀ1, strong (b-
lactam C¼O).
The factors that control the coupling of 2-oxoglutarate
conversion to penicillin oxidation by DAOCS are subtle
and hitherto poorly defined. However, it is known that
modifications to either the C-terminus9 or Arg-25823
(the residue that binds the 5-carboxylate group of 2-
oxoglutarate) both lead to substantial uncoupling of
these reactions. Low levels of uncoupled 2-oxoglutarate
conversion have been proposed to be a mechanism of
‘proof-reading’ in order to deselect incorrect substrates,
or correct substrates incorrectly bound.8
15. DAOCS and DAOC/DACS were produced using Escher-
ichia coli BL21 (DE3) with the pET24a-derived plasmids
pHL1 and pKC200 (constructed by Dr. K. S. Hewitson, Uni-
versity of Oxford), respectively. Purification to ca. 95% purity
was achieved using anion-exchange and gel filtration chroma-
tographies.
6-a-Methylpenicillin N (1) (1.5 mg) was incubated with
DAOCS (6.47 mg, 116 IU/mg using penicillin G as sub-
strate20) as previously reported8 for 90 min. 1H NMR analysis
(500 MHz) of the quenched reaction suggested <2% conver-
sion to cephem products.
More information, and in particular structural infor-
mation, is required before the factors behind the cou-
pling and uncoupling of these processes can be fully
elucidated. However, the differing fates of 6-a-methyl-
penicillin N (1) upon oxidation with DAOCS and
DAOC/DACS brings some further insight to this
interesting puzzle.
6-a-Methylpenicillin N (1) (1.5 mg) was incubated8 with
DAOC/DACS (2.86 mg, 135 IU/mg with 6-a-methylpenicillin
1
N as substrate20). H NMR analyses (500 MHz) of the quen-
ched reaction mixture suggested >95% conversion to (8).
HPLC purification [ODS (250Â4.6 mm), isocratic elution with
25 mM NH4HCO3 and 1% (v/v) acetonitrile, 1 mL/min,
l=254 nm, 2 AUFS] resulted in isolation of (8) (107 mg) with
a retention volume of 4.4 mL: 1H NMR (500 MHz, D2O) d
1.55–1.65 (5H, m, Me and CH2CH2CONH), 1.70–1.85 (2H,
m, CH2CH2CH2CONH), 2.35 (2H, m, CH2CONH), 3.28
(0.6H, s, residual MeOH), 3.40 (1H, d, J 17 Hz, one of SCH2),
3.50 (1H, m, H2NCH), 3.55 (1H, d, J 17 Hz, one of SCH2),
4.97 (1H, s, NHCHSCH2), 9.05 (1H, s, CHO); m/z (Àve ESI
MS) 401.33 ([MÀH]À, 100%; calcd 401.4). A small amount of
1 was recovered as a broad peak with a retention volume of
6.6–7.0 mL: m/z (Àve ESI-MS) 372.3 [MÀH]À, (100%).
16. Baldwin, J. E.; Goh, K.-C.; Schofield, C. J. J. Antibiot.
1992, 45, 1378.
Acknowledgements
We thank Dr. K. S. Hewitson for plasmid pKC200, Dr.
B. Odell and Dr. R. T. Aplin for NMR and mass spec-
trometric analyses, respectively, and Dr. R. M. Adling-
ton and Professor C. J. Schofield for helpful discussions.
The BBSRC, EPSRC, MRC, Wellcome Trust and E.U.
Biotechnology programme funded this work.
17. Lee, H.-J.; Lloyd, M. D.; Harlos, K.; Schofield, C. J. Bio-
chem. Biophys. Res. Commun. 2000, 267, 445.
18. Baldwin, J. E.; Crabbe, M. J. C. FEBS Lett. 1987, 214,
357.
References and Notes
1. Baldwin, J. E. J. Heterocyclic Chem. 1990, 27, 71.
2. Prescott, A. G.; Lloyd, M. D. Nat. Prod. Rep. 2000, 17,
367.
3. Pang, C. P.; White, R. L.; Abraham, E. P.; Crout, D. H. G.;
Lutstorf, M.; Morgan, P. J.; Derome, A. E. Biochem. J. 1984,
222, 777.
4. Townsend, C. A.; Theis, A. B.; Neese, A. S.; Barrabee,
E. B.; Poland, D. J. Am. Chem. Soc. 1985, 107, 4760.
5. Englard, S.; Blanchard, J. S.; Midelford, C. F. Biochemistry
1985, 24, 1110.
6. Iwata-Reuyl, D.; Basak, A.; Townsend, C. A. J. Am. Chem.
Soc. 1999, 121, 11356.
7. Valegard, K.; Terwisscha van Scheltinga, A. C.; Lloyd,
M. D.; Hara, T.; Ramaswamy, S.; Perrakis, A.; Thompson,
A.; Lee, H.-J.; Baldwin, J. E.; Schofield, C. J.; Hajdu, J.;
Andersson, I. Nature 1998, 394, 805.
8. Lloyd, M. D.; Lee, H.-J.; Harlos, K.; Zhang, Z. H.; Bald-
win, J. E.; Schofield, C. J.; Charnock, J. M.; Garner, C. D.;
Hara, T.; Terwisscha van Scheltinga, A. C.; Valegard, K.;
Viklund, J. A. C.; Hajdu, J.; Andersson, I.; Danielsson, A.;
Bhikhabhai, R. J. Mol. Biol. 1999, 287, 943.
19. Morgan, N.; Periera, I. A. C.; Andersson, I. A.; Adling-
ton, R. M.; Baldwin, J. E.; Cole, S. C. J.; Crouch, N. P.;
Sutherland, J. D. Bioorg. Med. Chem. Lett. 1994, 4, 1595.
20. Dubus, A.; Lloyd, M. D.; Lee, H.-J.; Schofield, C. J.;
Baldwin, J. E.; Frere, J.-M. Cell. Mol. Life Sci. 2001, 58, 835.
21. The structure of DAOC/DACS was modelled from the
DAOCS: iron(II):2-oxoglutarate complex (1rxg.pdb) with the
programme O,24 followed by model refinement within CNS.25
Residues 310–332 of DAOC/DACS could not be adequately
modelled, but are predicted to form at least one further helix.
Models for 6-a-methylpenicillin N and dioxygen were pro-
duced using Quanta (Molecular Simulations), docked into the
protein structures and refined.
22. Lipscomb, S. J.; Lee, H.-J.; Baldwin, J. E.; Schofield, C. J.;
Lloyd, M. D. Manuscript in preparation.
23. Lee, H.-J.; Lloyd, M. D.; Clifton, I. J.; Harlos, K.; Dubus,
A.; Baldwin, J. E.; Frere, J.-M.; Schofield, C. J. J. Biol. Chem.
2001, 276, 18290.
24. Jones, T. A.; Bergdoll, M.; Kjeldgaard, M. In Crystal-
lographic and Modeling Methods in Molecular Design;
Springer: New York, 1990; p 189.
9. Lee, H.-J.; Lloyd, M. D.; Harlos, K.; Clifton, I. J.; Bald-
win, J. E.; Schofield, C. J. J. Mol. Biol. 2001, 308, 937.
10. Firestone, R. A.; Schelechow, N.; Johnston, D. B. R.;
Christensen, B. G. Tetrahedron Lett. 1972, 5, 375.
11. Firestone, R. A.; Maciejewicz, N.; Ratcliffe, R. W.;
Christensen, B. G. J. Org. Chem. 1974, 39, 437.
25. Brunger, A. T.; Adams, P. D.; Clore, G. M.; DeLano,
¨
W. L.; Gros, P.; Grosse-Kunstleve, R. W.; Jiang, J.-S.; Kus-
zewski, J.; Nilges, N.; Pannu, N. S.; Read, R. J.; Rice, L. M.;
Simonson, T.; Warren, G. L. Acta Cryst. 1998, D54, 905.
26. Esnouf, R. M. J. Mol. Graph. 1997, 15, 132.
27. Kraulis, P. J. J. Appl. Crystallogr. 1991, 24, 946.