O. Germay et al. / Tetrahedron Letters 42 (2001) 4969–4974
4973
3. (a) Walkup, R. D.; Park, G. Tetrahedron Lett. 1988, 29,
5505–5508; (b) Walkup, R. D.; Kim, S. W.; Wagy, S. D.
J. Org. Chem. 1993, 58, 6486–6490; (c) Walkup, R. D.;
Kim, S. W. J. Org. Chem. 1994, 59, 3433–3441; (d)
Walkup, R. D.; Kim, Y. S. Tetrahedron Lett. 1995, 36,
3091–3094; (e) Mavropoulos, I.; Perlmutter, P. Tetra-
hedron Lett. 1996, 37, 3751–3754; (f) Mandville, G.;
Bloch, R. Eur. J. Org. Chem. 1999, 2303–2307; (g) Sol-
ladie, G.; Salom-Roig, X. J.; Hanquet, G. Tetrahedron
Lett. 2000, 41, 551–554; (h) Bernsmann, H.; Hungerhoff,
B.; Fechner, R.; Frohlich, R.; Metz, P. Tetrahedron Lett.
2000, 41, 1721–1724; (i) Solladie, G.; Salom-Roig, X. J.;
Hanquet, G. Tetrahedron Lett. 2000, 41, 2737–2740; (j)
Bernsmann, H.; Frohlich, R.; Metz, P. Tetrahedron Lett.
2000, 41, 4347–4351; (k) Bernsmann, H.; Gruner, M.;
Metz, P. Tetrahedron Lett. 2000, 41, 7629–7633.
4. Solladie, G.; Dominguez, C. J. Org. Chem. 1994, 59,
3898–3901.
The completion of the synthesis of pamamycin 607 1 is
outlined in Scheme 7. The acid 34 and alcohol 42 were
coupled using 2,4,6-trichlorobenzoyl chloride23 to give
the ester 43. Attempted desilylation using tetra-
butylammonium fluoride was accompanied by elimina-
tive
tetrahydrofuran
opening
and
so
the
tert-butyldimethylsilyl group was removed using
aqueous hydrogen chloride in ethanol. This also
removed the tert-butyloxycarbonyl group which had to
be reinstated. Hydrogenolysis then gave the seco-acid
44 which was cyclised using 2,4,6-trichlorobenzoyl
chloride23 to give the macrodiolide 45 in 25% yield
accompanied by a dimer. Finally, removal of the tert-
butyloxycarbonyl group and N-methylation gave
pamamycin 607 1, characterised as its trifluoroacetate
salt, which had spectroscopic data (1H and 13C NMR,
MS) identical to those of the natural product.24
5. Thomas, E. J. J. Chem. Soc., Chem. Commun. 1997,
411–418.
6. Carey, J. S.; Thomas, E. J. Synlett 1992, 585–586.
7. Barks, J. M.; Knight, D. W.; Seaman, C. J.; Weingarten,
G. G. Tetrahedron Lett. 1994, 35, 7259–7262.
8. (a) Kang, S. H.; Hwang, T. S.; Kim, W. J.; Lim, J. K.
Tetrahedron Lett. 1990, 31, 5917–5921; (b) Kang, S. H.;
Hwang, T. S.; Kim, W. J.; Lim, J. K. Tetrahedron Lett.
1991, 32, 4015–4018; (c) Ley, S. V.; Lygo, B. Tetrahedron
Lett. 1982, 23, 4625–4628; (d) Brussani, G.; Ley, S. V.;
Wright, J. L.; Williams, D. J. J. Chem. Soc., Perkin
Trans. 1 1986, 303–307.
This total synthesis of pamamycin 607 exemplifies the
synthesis of tetrahydrofurans using reactions between
allylstannanes and aldehydes followed by phenylselen-
enyl induced cyclisation, and demonstrates that this
chemistry can be used for the synthesis of complex
natural products. In this synthesis, all the stereogenic
centres, apart from that at C(15), were introduced
either during the allylstannane–aldehyde reactions or
were induced by centres which had been introduced
during the allylstannane–aldehyde reactions. The appli-
cation of this strategy, for the synthesis of other tetra-
hydrofuran containing natural products, is under
investigation.
9. Mihelich, D.; Hite, G. A. J. Am. Chem. Soc. 1992, 114,
7318–7319.
10. The structure of the tetrahydrofuran 7 was confirmed by
a second synthesis, see Hobson, L. A.; Singh, L. W.;
Thomas, E. J., submitted to ARKIVOC.
Acknowledgements
11. Claffey, M. M.; Heathcock, C. H. J. Org. Chem. 1996,
61, 7646–7647.
The authors are very grateful indeed to Professor M.
Natsume of the Department of Applied Biological Sci-
ence in the Tokyo University of Agriculture and Tech-
nology for help in confirming the structure of the
synthetic material, in particular for the generous gift of
a sample of natural pamamycin 607 and for the provi-
sion of spectra of the natural product. They would also
like to thank Dr. P. Evans for carrying out the final two
steps and the EPSRC for support (to N.K.).
12. (a) Ahmar, M.; Duyck, C.; Fleming, I. J. Chem. Soc.,
Perkin Trans 1 1998, 2721–2732; (b) Fleming, I.; Ghosh,
S. K. J. Chem. Soc., Perkin Trans. 1 1998, 2733–2747; (c)
Deschenaux, P.-F.; Jacot-Guillarmod, A. Helv. Chim.
Acta 1990, 73, 1861–1864; (d) Sun, K. M.; Fraser-Reid,
B. Can. J. Chem. 1980, 58, 2732–2735; (e) Takatori, K.;
Tanaka, N.; Tanaka, K.; Kajiwara, M. Heterocycles
1993, 36, 1489–1492; (f) Bratt, K.; Garavelas, A.; Perl-
mutter, P.; Westman, G. J. Org. Chem. 1996, 61, 2109–
2117.
References
13. (a) Widmer, U. Synthesis 1983, 135–136; (b) Michael, J.;
Gravestock, D. South Afr. J. Chem. 1998, 51, 146–157.
14. (a) Davies, S. G.; Ichihara, O. Tetrahedron: Asymmetry
1991, 2, 183–186; (b) Davies, S. G.; Walters, I. A. S. J.
Chem. Soc., Perkin Trans. 1 1994, 1129–1139; (c) Davies,
S. G.; Ichihara, O.; Walters, I. A. S. J. Chem. Soc.,
Perkin Trans. 1 1994, 1141–1147; (d) Bunnage, M. E.;
Burke, A. J.; Davies, S. G.; Goodwin, C. Tetrahedron:
Asymmetry 1995, 6, 165–176.
15. The 2,5-cis-configuration assigned to the tetrahydrofuran
20 was established by NOE studies and confirmed by
correlation with known compounds.3
16. Lower yields were obtained for cyclisation if the nitrogen
was protected as its Cbz-derivative due to increased
participation of the N-substituent. Difficulties were
1. (a) Natsume, M. Recent Res. Dev. Agric. Biol. Chem.
1999, 3, 11–22; (b) McCann, P. A.; Pogell, B. M. J.
Antibiot. 1979, 32, 673–678; (c) Natsume, M.; Yasui, K.;
Kondo, S.; Marumo, S. Tetrahedron Lett. 1991, 32, 3087–
3090; (d) Stengel, C.; Reinhardt, G.; Grafe, U. J. Basic
Microbiol. 1992, 32, 339–345; (e) Kozone, I.; Chikamoto,
N.; Abe, H.; Natsume, M. J. Antibiot. 1999, 52, 329–331.
2. (a) Kondo, S.; Yasui, K.; Natsume, M.; Katayama, M.;
Marumo, S. J. Antibiot. 1988, 41, 1196–1204; (b) Kondo,
S.; Yasui, K.; Katayama, M.; Marumo, S.; Kondo, T.;
Hattori, H. Tetrahedron Lett. 1987, 28, 5861–5864; (c)
Natsume, M.; Kondo, S.; Marumo, S. J. Chem. Soc.,
Chem. Commun. 1989, 1911–1913.