5452
V. A. Soloshonok et al. / Tetrahedron Letters 43 (2002) 5449–5452
Synthesis of Fluoro-Organic Compounds: Stereochemical
10. (a) Onus’ko, P. P.; Suvalova, E. A.; Chudakova, A. D.;
Sinitsa, A. D. Zh. Obshch. Kim. 1991, 61, 843; (b)
Onus’ko, P. P.; Suvalova, E. A.; Chudakova, A. D.; Kim,
T. V.; Kiseleva, E. I.; Sinitsa, A. D. Zh. Obshch. Kim.
1989, 59, 2138.
11. For preparation of imidoyl chlorides of carboxylic acids
from N-monosubstituted carboxamides using PPh3/CCl4,
see: (a) Appel, R.; Warning, K.; Ziehn, K.-D. Chem. Ber.
1974, 107, 698; (b) Appel, R.; Warning, K.; Ziehn, K.-D.
Chem. Ber. 1973, 106, 2093; (c) Appel, R.; Warning, K.;
Ziehn, K.-D. Chem. Ber. 1973, 106, 3450.
Challenges and Biomedicinal Targets; Soloshonok, V. A.,
Ed.; Wiley: Chichester, 1999; (d) Welch, J. T.;
Eswarakrischnan, S. Fluorine in Bioorganic Chemistry;
Wiley: New York, 1991; (e) Selective Fluorination in
Organic and Bioorganic Chemistry; Welch, J. T., Ed.;
American Chemical Society: Washington, 1991; (f)
Biomedicinal Aspects of Fluorine Chemistry; Filler, R.;
Kobayashi, Y., Eds.; Kodansha: Tokyo, Elsevier:
Amsterdam–New York–Oxford, 1982; (g) Sieler, M.;
Jung, M. J.; Koch-Waser Enzyme-Activated Irreversible
Inhibitors; Elsevier: Amsterdam, 1978; (h) Organofluorine
Chemistry: Principles and Commercial Applications;
Banks, R. E.; Smart, B. E.; Tatlow, J. C., Eds.; Plenum
Press: New York, 1994.
12. The reaction was followed by 19F NMR: disappearance
of a singlet at −72.13 ppm (12a) and appearance of a
doublet (J=6.3 Hz) at 77.04 ppm (13a).
13. As suggested by the referee, ‘‘the temporary loss of
conjugation accompanying this 1,3-halide shift (from
compound 12a to 13a) may be responsible for both
unfavorable kinetics and thermodynamics’’ of this trans-
formation. We fully agree with this suggestion.
14. For preparation of carboxamides from carboxylic acids
and primary amines using PPh3/CCl4, see: (a) Barstow, L.
E.; Hruby, V. J. J. Org. Chem. 1971, 36, 1305; (b)
Duncia, J. V.; Pierce, M. E.; Santella, J. B., III. J. Org.
Chem. 1991, 56, 2395.
5. (a) Soloshonok, V. A.; Kirilenko, A. G.; Kukhar, V. P.;
Resnati, G. Tetrahedron Lett. 1994, 35, 3119; (b) Ono, T.;
Kukhar, V. P.; Soloshonok, V. A. J. Org. Chem. 1996,
61, 6563; (c) Soloshonok, V. A.; Ono, T. Tetrahedron
1996, 52, 14701; (d) Soloshonok, V. A.; Ono, T. J. Org.
Chem. 1997, 62, 3030.
6. (a) Soloshonok, V. A.; Kukhar, V. P. Tetrahedron 1996,
52, 6953; (b) Soloshonok, V. A.; Kukhar, V. P. Tetra-
hedron 1997, 53, 8307; (c) Soloshonok, V. A.; Ono, T.;
Soloshonok, I. V. J. Org. Chem. 1997, 62, 7538; (d)
Soloshonok, V. A.; Soloshonok, I. V.; Kukhar, V. P.;
Svedas, V. K. J. Org. Chem. 1998, 63, 1878. See also Ref.
5c.
15. Tamura, K.; Mizukami, H.; Maeda, K.; Watanabe, H.;
Uneyama, K. J. Org. Chem. 1993, 58, 32.
16. General procedure for preparing amines 16a–c starting
from acids 9a–c. To a solution of triphenylphosphine
(19.704 mmol) in CHCl3 (4 mL) at 0°C and under air
atmosphere TEA (7.389 mmol), fluoroalkylcarboxylic
acid 9a–c (4.926 mmol), benzylamine (4.926 mmol) and
carbon tetrachloride (19.704 mmol) were added and the
mixture was stirred for 10 min. After that, the mixture
was stirred for 40 min at 80°C. The resultant mixture was
evaporated and treated with AcOH (10 mL) and hexane
(30 mL). The AcOH phase was separated and washed
with hexane (30 mL×3). Combined hexane extracts were
washed with NaHCO3 and evaporated. The residue
obtained was treated with TEA (6 mL) and H2O (2 mL)
and stirred at 80°C for 12 h. The resultant mixture was
evaporated and treated with conc. hydrochloric acid (5
mL) and methanol (2.5 mL) and heated under reflux for
12 h. The resultant product was treated with AcOEt (20
mL) and H2O (10 mL). The aqueous layer was separated
and washed by AcOEt (20 mL×2). The aqueous layer was
evaporated. The solid compound obtained was washed
with CHCl3 (2 mL) to afford white crystalline hydrochlo-
ric salt of the corresponding fluorinated amine. Yields of
16a–c are discussed in the text. 14a: 1H NMR: 4.18 (q,
2H, J=9.3 Hz), 7.35–7.55 (m, 3H), 8.03–8.09 (m, 2H).
19F NMR: −71.5 (t, J=9.3 Hz). 13C NMR: 55.0 (q,
J=33.0 Hz), 124.4 (q, J=276.8 Hz), 128.4, 128.5, 129.1,
129.15, 132.2, 134.7, 148.2.
7. Soloshonok, V. A. Biomimetic reducing agent-free reduc-
tive amination of fluoro-carbonyl compounds. Practical
asymmetric synthesis of enantiopure fluoro-amines and
amino acids. In Asymmetric Fluoro-Organic Chemistry:
Synthesis,
Applications,
and
Future
Directions;
Ramachandran, P. V., Ed.; ACS Books, American
Chemical Society: Washington, DC, 1999; Chapter 6, pp.
74–83.
8. (a) Bunge, K.; Huisgen, R.; Raab, R.; Stangl, H. Chem.
Ber. 1972, 105, 1279; (b) Bunge, K.; Huisgen, R.; Raab,
R. Chem. Ber. 1972, 105, 1296; (c) Onus’ko, P. P.; Kim,
T. V.; Kiseleva, E. I.; Sinitsa, A. D. J. Fluor. Chem. 1994,
69, 213; (d) Onus’ko, P. P.; Kim, T. V.; Kiseleva, E. I.;
Sinitsa, A. D. Zh. Obshch. Kim. 1995, 65, 787; (e)
Tanaka, K.; Hiroki, D.; Keiryo, M. Heterocycles 1984,
21, 611; (f) Tanaka, K.; Daikaku, H.; Mitsuhashi, K.
Chem. Lett. 1983, 1463.
9. (a) Onus’ko, P. P.; Kim, T. V.; Kiseleva, E. I.; Sinitsa, A.
D. Zh. Obshch. Kim. 1996, 66, 936; (b) Onus’ko, P. P.;
Kim, T. V.; Kiseleva, E. I.; Sinitsa, A. D. Zh. Obshch.
Kim. 1995, 65, 1961; (c) Sinitsa, A. D.; Onus’ko, P. P.;
Kim, T. V.; Kiseleva, E. I.; Pirozhenko, V. V. Zh.
Obshch. Kim. 1986, 65, 2681; (d) Onus’ko, P. P.; Kim, T.
V.; Kiseleva, E. I.; Povolotsky, M. I.; Sinitsa, A. D. Zh.
Obshch. Kim. 1989, 59, 1682.