Journal of the American Chemical Society
Page 12 of 14
(47) Liu, J.-G.; Naruta, Y.; Tani, F. A Functional Model of the
Crystal Structures, and Electronic Structures. J. Am. Chem. Soc. 1987,
109, 1425–1434.
Cytochrome c Oxidase Active Site: Unique Conversion of a Heme–μ-
Peroxo–CuII Intermediate into Heme– Superoxo/CuI. Angew. Chem., Int.
Ed. 2005, 44, 1836–1840.
(48) Liu, J.-G.; Ohta, T.; Yamaguchi, S.; Ogura, T.; Sakamoto, S.; Maeda,
Y.; Naruta, Y. Spectroscopic Characterization of a Hydroperoxo-Heme
1
2
3
4
5
6
7
8
(67) There do exist S = 3/2 six-coordinate [(porphyrinate)FeIII-
(X)(X’)] complexes, where X and X’ are weak ligands (e.g., ethanol, H2O,
THF) not involving a side-on bound peroxo ligand. (a) Simonato, J.-P.;
Pécaut, J.; Le Pape, L.; Oddou, J.-L.; Jeandey, C.; Shang, M.; Scheidt, W. R.;
Wojaczyński, J.; Wo łowiec, S.; Latos-Grażyński, L.; Marchon, J.-C. An
Integrated Approach to the Mid-Spin State (S= 3/2) in Six-Coordinate
Iron(III) Chiroporphyrins. Inorg. Chem. 2000, 39, 3978−3987. (b)
Ikeue, T.; Ohgo, Y.; Yamaguchi, T.; Takahashi, M.; Takeda, M.; Nakamura,
M. Saddle-Shaped Six-Coordinated Iron(III) Porphyrin Complexes
Showing a Novel Spin Crossover between S = 1/2 and S = 3/2 Spin
States. Angew. Chem., Int. Ed. 2001, 40, 2617–2620.
Intermediate: Conversion of
a Side-on Peroxo to an End-on
Hydroperoxo Complex. Angew. Chem., Int. Ed. 2009, 48, 9262–9267.
(49) Liu, J.-G.; Shimizu, Y.; Ohta, T.; Naruta, Y. Formation of an End-on
Ferric Peroxo Intermediate upon One-Electron Reduction of a Ferric
Superoxo Heme. J. Am. Chem. Soc. 2010, 132, 3672–3673.
(50) Li, Y.; Sharma, S. K.; Karlin, K. D. New Heme-Dioxygen and
Carbon Monoxide Adducts Using Pyridyl or Imidazolyl Tailed
Porphyrins. Polyhedron 2013, 58, 190–196.
(51) Nagaraju, P.; Ohta, T.; Liu, J.-G.; Ogura, T.; Naruta, Y. The
Secondary Coordination Sphere Controlled Reactivity of a Ferric-
Superoxo Heme: Unexpected Conversion to a Ferric Hydroperoxo
Intermediate by Reaction with a High-Spin Ferrous Heme. Chem.
Commun. 2016, 52, 7213–7216.
(52) Kim, H.; Sharma, S. K.; Schaefer, A. W.; Solomon, E. I.; Karlin, K.
D. Heme−Cu Binucleating Ligand Supports Heme/O2 and FeII−CuI/O2
Reactivity Providing High- and Low-Spin FeIII−Peroxo−CuII Complexes.
Inorg. Chem. 2019, 58, 15423-15432.
(53) Vaz, A. D. N.; McGinnity, D. F.; Coon, M. J. Epoxidation of Olefins
by Cytochrome P450: Evidence from Site-Specific Mutagenesis for
Hydroperoxo-Iron as an Electrophilic Oxidant. Proc. Natl. Acad. Sci. U. S.
A. 1998, 95, 3555–3560.
(54) Newcomb, M.; Shen, R.; Choi, S.-Y.; Toy, P. H.; Hollenberg, P. F.;
Vaz, A. D. N.; Coon, M. J. Cytochrome P450-Catalyzed Hydroxylation of
Mechanistic Probes That Distinguish between Radicals and Cations.
Evidence for Cationic but Not for Radical Intermediates. J. Am. Chem.
Soc. 2000, 122, 2677–2686.
(55) Jin, S.; Makris, T. M.; Bryson, T. A.; Sligar, S. G.; Dawson, J. H.
Epoxidation of Olefins by Hydroperoxo-Ferric Cytochrome P450. J. Am.
Chem. Soc. 2003, 125, 3406–3407.
(56) Fukuzumi, S.; Lee, Y.-M.; Nam, W. Structure and Reactivity of the
First-Row d-Block Metal-Superoxo Complexes. Dalt. Trans. 2019, 48,
9469–9489.
(57) Noh, H.; Cho, J. Synthesis, Characterization and Reactivity of
Non-Heme 1st Row Transition Metal-Superoxo Intermediates. Coord.
Chem. Rev. 2019, 382, 126–144.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(68) Neese, F.; Solomon, E. I. Detailed Spectroscopic and Theoretical
Studies on [Fe(EDTA)(O2)]3-: Electronic Structure of the Side-on Ferric-
Peroxide Bond and Its Relevance to Reactivity. J. Am. Chem. Soc. 1998,
120, 12829–12848.
(69) Simaan, A. J.; Döpner, S.; Banse, F.; Bourcier, S.; Bouchoux, G.;
Boussac, A.; Hildebrandt, P.; Girerd, J.-J. FeIII-Hydroperoxo and Peroxo
Complexes with Aminopyridyl Ligands and the Resonance Raman
Spectroscopic Identification of the Fe-O and O-O Stretching Modes. Eur.
J. Inorg. Chem. 2000, 1627–1633.
(70) Roelfes, G.; Vrajmasu, V.; Chen, K.; Ho, R. Y. N.; Rohde, J.-U.;
Zondervan, C.; la Crois, R. M.; Schudde, E. P.; Lutz, M.; Spek, A. L.; Hage,
R.; Feringa, B. L.; Münck, E.; Que, L. End-on and Side-on Peroxo
Derivatives of Non-Heme Iron Complexes with Pentadentate Ligands:
Models for Putative Intermediates in Biological Iron/Dioxygen
Chemistry. Inorg. Chem. 2003, 42, 2639–2653.
(71) Van Wart, H. E.; Zimmer, J. Resonance Raman Evidence for the
Activation of Dioxygen in Horseradish Oxyperoxidase. J. Biol. Chem.
1985, 260, 8372–8377.
(72) Peterson, R. L.; Ginsbach, J. W.; Cowley, R. E.; Qayyum, M. F.;
Himes, R. A.; Siegler, M. A.; Moore, C. D.; Hedman, B.; Hodgson, K. O.;
Fukuzumi, S.; Solomon, E. I.; Karlin, K. D. Stepwise Protonation and
Electron-Transfer Reduction of a Primary Copper-Dioxygen Adduct. J.
Am. Chem. Soc. 2013, 135, 16454–16467.
(73) Adam, S. M.; Garcia-Bosch, I.; Schaefer, A. W.; Sharma, S. K.;
Siegler, M. A.; Solomon, E. I.; Karlin, K. D. Critical Aspects of Heme–
Peroxo–Cu Complex Structure and Nature of Proton Source Dictate
Metal–OPeroxo Breakage versus Reductive O–O Cleavage Chemistry. J .
Am. Chem. Soc. 2017, 139, 472–481.
(58) Davydov, R.; Hoffman, B. M. Active Intermediates in Heme
Monooxygenase Reactions as Revealed by Cryoreduction/Annealing,
EPR/ENDOR Studies. Arch. Biochem. Biophys. 2011, 507, 36–43.
(59) W Warren, J. J.; Tronic, T. A.; Mayer, J. M. Thermochemistry of
Proton-Coupled Electron Transfer Reagents and Its Implications. Chem.
Rev. 2010, 110, 6961–7001.
(60) Chufán, E. E.; Karlin, K. D. An Iron-Peroxo Porphyrin Complexꢀ:
New Synthesis and Reactivity Toward a Cu(II) Complex Giving a Heme-
Peroxo-Copper Adduct. J. Am. Chem. Soc. 2003, 125, 16160–16161.
(61) Ghiladi, R. A.; Kretzer, R. M.; Guzei, I.; Rheingold, A. L.; Neuhold,
Y.-M.; Hatwell, K. R.; Zuberbühler, A. D.; Karlin, K. D. (F8TPP)FeII/O2
(74) Carver, C. T.; Matson, B. D.; Mayer, J. M. Electrocatalytic Oxygen
Reduction by Iron Tetra-arylporphyrins Bearing Pendant Proton
Relays. J. Am. Chem. Soc. 2012, 134, 5444–5447.
(75) Tajima, K.; Oka, S.; Edo, T.; Miyake, S.; Mano, H.; Mukai, K.;
Sakurai, H.; Ishizu, K. Optical Absorption and EPR studies on a Six-
coordinate
Iron(III)-tetramesitylporphyrin-Hydorgen
Peroxide
complex Having a Nitrogenous Axial Ligand. J. Chem. Soc., Chem.
Commun. 1995, 1507–1508.
(76) Oliveira, R.; Zouari, W.; Herrero, C.; Banse, F.; Schöllhorn, B.;
Fave, C.; Anxolabéhère-Mallart, E. Characterization and Subsequent
Reactivity of an Fe-Peroxo Porphyrin Generated by Electrochemical
Reductive Activation of O2. Inorg. Chem. 2016, 55, 12204–12210.
(77) Tajima, K.; Shigematsu, M.; Jinno, J.; Ishizu, K.; Ohya-Nishiguchic,
Reactivity
Studies
{F8TPP
=
Tetrakis(2,6-
difluorophenyl)porphyrinate(2−)}: Spectroscopic (UV−Visible and
NMR) and Kinetic Study of Solvent-Dependent (Fe/O2 = 1:1 or 2:1)
Reversible O2-Reduction and Ferryl Formation. Inorg. Chem. 2001, 40,
5754–5767.
(62) Kim, E.; Helton, M. E.; Wasser, I. M.; Karlin, K. D.; Lu, S.; Huang,
H.-w.; Moënne-Loccoz, P.; Incarvito, C. D.; Rheingold, A. L.; Honecker,
M.; Kaderli, S.; Zuberbühler, A. D. Superoxo,ꢀμ-peroxo, andꢀ μ-oxo
Complexes from Heme/O2 and Heme-Cu/O2 Reactivity: Copper Ligand
Influences in Cytochrome c Oxidase Models. Proc. Natl. Acad. Sci. U. S. A.
2003, 100, 3623–3628.
(63) McCandlish, E.; Mikszta, A. R.; Nappa, M.; Sprenger, A. Q.;
Valentine, J. S.; Stong, J. D.; Spiro, T. G. Reactions of Superoxide with Iron
Porphyrins in Aprotic Solvents. A High Spin Ferric Porphyrin Peroxo
Complex. J. Am. Chem. Soc. 1980, 102, 4268–4271.
(64) Selke, M.; Sisemore, M. F.; Valentine, J. S. The Diverse Reactivity
of Peroxy Ferric Porphyrin Complexes of Electron-Rich and Electron-
Poor Porphyrins. J. Am. Chem. Soc. 1996, 118, 2008–2012.
(65) TPP = meso-tetraphenylporphyrin, OEP = octaethylporphyrin.
(66) VanAtta, R. B.; Strouse, C. E.; Hanson, L. K.; Valentine, J. S.
H. Generation of FeIIIOEP-Hydrogen Peroxide Complex (OEP
=
Octaethylporphyrinato) by Reduction of FeIIOEP-O2 with Ascorbic Acid
Sodium Salt. J. Chem. Soc., Chem. Commun., 1990, 144–145.
(78) Davydov, R. M.; Yoshida, T.; Ikeda-Saito, M.; Hoffman, B. M.
Hydroperoxy-Heme Oxygenase Generated by Cryoreduction Catalyzes
the Formation of α-meso-Hydroxyheme as Detected by EPR and
ENDOR. J. Am. Chem. Soc. 1999, 121, 10656–10657.
(79) Ibrahim, M.; Denisov, I. G.; Makris, T. M.; Kincaid, J. R.; Sligar, S.
G. Resonance Raman Spectroscopic Studies of Hydroperoxo-Myoglobin
at Cryogenic Temperatures. J. Am. Chem. Soc. 2003, 125, 13714–13718.
(80) Sengupta, K.; Chatterjee, S.; Samanta, S.; Dey, A. Direct
Observation of Intermediates Formed during Steady-State
Electrocatalytic O2 Reduction by Iron Porphyrins. Proc. Natl. Acad. Sci.
U. S. A. 2013, 110, 8431–8436.
(81) Mak, P. J.; Denisov, I. G.; Victoria, D.; Makris, T. M.; Deng, T.;
Sligar, S. G.; Kincaid, J. R. Resonance Raman Detection of the
Hydroperoxo Intermediate in the Cytochrome P450 Enzymatic Cycle. J.
Am. Chem. Soc. 2007, 129, 6382–6383.
(82) Denisov, I. G.; Mak, P. J.; Makris, T. M.; Sligar, S. G.; Kincaid, J. R.
Resonance Raman Characterization of the Peroxo and Hydroperoxo
[Peroxotetraphenylporphinato]Manganese(III)
and
[Chlorotetraphenylporphinato]Manganese(II) Anions. Syntheses,
ACS Paragon Plus Environment