M. Bakavoli et al. / Journal of Molecular Structure 969 (2010) 139–144
143
philes (vinyl acetate, 2-propyne-1-ol and styrene), calculated with
MK population analysis are given in Table 3a. The values of the
quantities of s3, s4, s5, s6, s7 and s8 are given in Table 3b. The small
value of s3 compared to s4, for the reaction a, s5 compared to s6 for
reaction b and s7 compared to s8 for reaction c shows that the
cycloaddition channel leading to the cycloadduct 3, 5 and 7 (see
Scheme 3) is the most favored. Thus, the experimental regioselec-
tivity is correctly predicted using DFT-based indexes.
1H, CH), 6.62 (t, 1H, CH, 2-furan ring), 6.84 (d, 1H, CH, 2-furan ring),
7.12 (d, 2H, CH, phenyl ring), 7.71 (d, 1H, CH, 2-furan ring), 8.13 (d,
2H, CH, phenyl ring); 13C NMR (DMSO-d6) dC: 21.8 (CH3), 35.7
(CH2), 83.3 (CH), 109.6, 109.8, 112.1, 126.5, 136.1, 142.3, 142.7,
150.7 (CPh and CFu), 156.4 (C@N), 169.3 (C@O).
Compound (8) orange solid: yield: 80%, m.p.: 143 °C, MS m/z
285(M+), Anal. Calcd for C14H11N3O4: C, 58.95; H, 3.89; N, 14.73.
Found: C, 58.92; H, 3.86; N, 14.70., IR (KBr) cmꢀ1: 1558 (NO2)as,
1336 (NO2)s,1672(C@N), 3650 (OH), 1H NMR (DMSO-d6) dH: 3.64
(s, 1H, OH), 4.82 (s, 2H, CH2), 6.24 (s, 1H, CH), 6.83 (t, 1H, CH, 2-fur-
an ring), 7.71 (d, 1H, CH, 2-furan ring), 7.89 (d, 1H, CH, 2-furan
ring), 8.13 (d, 2H, CH, phenyl ring), 8.44 (d, 2H, CH, phenyl ring);
13C NMR (DMSO-d6) dC: 55.0 (OCH2), 107.6, 112.1, 126.5, 142.7,
146.5, 156.4 (CPh and CFu), 108.6(CH@C), 136.1(C@CH),
139.1(C@N).
Compound (10) light red solid: yield: 85%, m.p.: 114 °C, MS m/z
333(M+), Anal. Calcd for C19H15N3O3: C, 68.46; H, 4.54; N, 12.61.
Found: C, 68.48; H, 4.58; N, 12.62. IR (KBr) cmꢀ1: 1647 (C@N),
1558 (NO2)as, 1336 (NO2)s. 1H NMR (DMSO-d6) dH: 3.60 (dd, 1H,
CH2), 3.86 (dd, 1H, CH2), 5.11 (t, 1H, CH), 6.52 (t, 1H, CH, 2-furan
ring), 6.81 (d, 1H, 2-furan ring), 7.12 (d, 2H, CH, phenyl ring),
7.21 (m, 1H, CH, phenyl ring), 7.25 (m, 2H, CH, phenyl ring), 7.40
(m, 2H, CH, phenyl ring), 7.72 (d, 1H, CH, 2-furan ring), 8.12 (d,
2H, CH, phenyl ring); 13C NMR (DMSO-d6) dC: 38.7 (CH2), 58.6
(CH), 108.9, 110.1, 111.3, 124.8, 126.6, 126.9, 129.1, 136.8, 140.1,
141.3, 144.2, 149.9 (CPh and CFu), 155.9 (C@N).
5.3.1.2. Case of a two-center process. In Scheme 4, we have reported
the values of local electrophilicities xþk for atoms N1 and C3 (nitril-
imine) and the local nucleophilicities xꢀk for atoms C4 and C5 of
dipolarophiles. According to the Chattaraj’s model [19,20], the local
philicity indexes (xþk xkꢀ) seem to be a reliable tool for the predic-
;
tion of the most favored interaction in a two-center polar process.
The results show that the most favored interaction will take place
between C3 center of nitrilimine (possessing the highest value of
xþk ) and the C4 center of dipolarophiles (possessing the highest va-
lue of xꢀk ). Consequently, the experimental regioselectivity is cor-
rectly predicted by Chattaraj’s model.
6. Conclusion
The regioselectivity for the 1,3-dipolar cycloaddition reactions
of nitrilimine (2) with vinyl acetate (3), 2-propyn-1-ol (4) and sty-
rene (5) has been investigated using experimental and theoretical
1H and 13C NMR studies together with the DFT-based reactivity in-
dexes at the B3LYP/6-31G(d) level of theory. The results obtained
in this work clearly predict the regiochemistry of the isolated
cycloadducts.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
7. Experimental
References
The melting points were recorded on an electrothermal type
9100 melting point apparatus. The 1H NMR (500 MHz) spectra
were recorded on a Bruker AM-500 spectrometer. 13C NMR spectra
were determined using the Bruker AM-500 instrument operating
at 125 MHz. IR spectra were determined as KBr pellets on a Shima-
dzu model 470 spectrophotometer. The mass spectra were scanned
on a Varian Mat CH-7 instrument at 70 eV. Column chromatogra-
phy was performed on silica gel (200–400 mesh; Kieselgel 60, E
Merck) using chloroform as eluent. Elemental analyses were car-
ried out on Carlo Erba CHNS-O 1108 apparatus and were in good
accord with theoretical data. Hydrazone 1 the precursor of nitrili-
mine 2 is a known compound were prepared according to gener-
ally used methods.
[1] A. Padwa (Ed.), 1,3-Dipolar Cycloaddition Chemistry, vol. 1–2, Wiley/
Interscience, New York, 1984.
[2] (a) A. Padwa, Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry
Towards Heterocycles and Natural Products, Wiley and Sons, Hoboken, 2003;
(b) P. Merino, in: A. Padwa (Ed.), Science of Synthesis, vol. 27, George Thieme,
New York, 2004.
[3] L.R. Domingo, M.J. Aurell, M. Arno, J.A. Saez, J. Org. Chem. 72 (2007) 4220.
[4] G.O. Jones, K.N. Houk, J. Org. Chem. 73 (2008) 1333.
[5] D.H. Ess, G.O. Jones, K.N. Houk, Adv. Synth. Catal. 348 (2006) 2337.
[6] G. Krajsovszky, A. Gaal, N. Haider, P. Matyus, J. Mol. Struct. (THEOCHEM) 528
(2000) 13.
[7] G. Molteni, A. Ponti, J. Org. Chem. 66 (2001) 5252.
[8] G. Molteni, A. Ponti, Tetrahedron 59 (2003) 5225.
[9] G. Molteni, ARKIVOC ii (2007) 224.
´
´
[10] T. Sasaki, T. Yoshioka, Bull. Chem. Soc. Jpn. 43 (1970) 1254.
[11] E. Jedlovská, A. Lévai, G. Tóth, B. Balázs, L. Fišera, J. Heterocycl. Chem. 36 (1999)
´
1087.
7.1. General procedure for synthesis 3-(furan-2-yl)-1-(4-nitrophenyl)-
4,5-dihydro-1H-pyrazol-5-yl acetate (6), (3-(furan-2-yl)-1-(4-
nitrophenyl)-1H-pyrazol-5-yl)methanol (8) and 3-(furan-2-yl)-1-(4-
nitrophenyl)-5-phenyl-4,5-dihydro-1H-pyrazole (10)
´
[12] E. Jedlovská, L. Fišera, J. Heterocycl. Chem. 41 (2004) 677.
[13] K. Wolinski, J.F. Hilton, P. Pulay, J. Am. Chem. Soc. 112 (1990) 8251.
[14] A. Garcıa-Granados, E. Melguizo, A. Parra, Y. Simeó, B. Viseras, J.A. Dobado, J.
´
Molina, J.M. Arias, J. Org. Chem. 65 (2000) 8214.
[15] J.L. Gazquez, F. Mendez, J. Am. Chem. Soc. 116 (1994) 9298.
[16] J.L. Gazquez, A. Martinez, F. Mendez, J. Phys. Chem. 97 (1993) 4059.
[17] A.K. Chandra, M.T. Nguyen, J. Comput. Chem. 19 (1998) 195.
[18] (a) A.K. Chandra, M.T. Nguyen, Int. J. Mol. Sci. 3 (2002) 310;
(b) A. Ponti, J. Phys. Chem. A 104 (2000) 8843.
[19] P.K. Chattaraj, B. Maiti, U. Sarkar, J. Phys. Chem. A 107 (2003) 4973.
[20] (a) P.K. Chattaraj, B. maiti, U. Sarkar, D.R. Roy, Chem. Rev. 106 (2006) 2065;
(b) P.K. Chattaraj, D.R. Roy, Chem. Rev. 107 (2007) PR46.
[21] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
V.G. Zakrzewski, J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M.
Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M.
Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A.
Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith,
M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe,
P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andres, M. HeadGordon,
E.S. Replogle, J.A. Pople, Gaussian 98 (Revision A), Gaussian, Inc., Pittsburgh,
PA, 1998.
The mixture of 4 mmol of hydrazone and 4.5–5 mmol of chlora-
mine-T (CAT) in ethanol (40 cm3) was added at room temperature
to the excess of dipolarophile (6–7 mmol) in ethanol (25 cm3). The
reaction mixture was heated to 80 °C and kept under reflux for 4–
6 h (TLC). Inorganic salts were filtered off; filtrate was evaporated
under vacuum to obtain the crude product. The pure product was
separated by column chromatography (chloroform as eluent). Ob-
tained products were crystallized from ethanol or methanol.
Compound (6) dark red solid: yield: 88%, m.p.: 98 °C, MS m/z
315 (M+), Anal. Calcd for C15H13N3O5: C, 57.14; H, 4.16; N, 13.33.
Found: C, 57.12; H, 4.15; N, 13.31. IR (KBr) cmꢀ1: 1725 (C@O),
1647 (C@N), 1558 (NO2)as, 1336 (NO2)s. 1H NMR (DMSO-d6) dH:
2.37 (s, 3H, CH3), 3.10 (dd, 1H, CH2), 3.33 (dd, 1H, CH2), 4.26 (t,