706
G. Krishnaiah et al. / Tetrahedron Letters 54 (2013) 703–706
15. Chavan, S. P.; Zubaidha, P. K.; Dantale, S. W.; Keshavaraja, A.; Ramaswamy, A.
V.; Ravindranathan, T. Tetrahedron Lett. 1996, 37, 233–236.
16. Madje, B. R.; Patil, P. T.; Shindalkar, S. S.; Benjamin, S. B.; Shingare, M. S.;
Dongare, M. K. Catal. Commun. 2004, 5, 353–357.
17. (a) Balaji, B. S.; Sasidharan, M.; Kumar, R.; Chanda, M. Chem. Commun. 1996,
707–708; (b) Balaji, B. S.; Chanda, M. Tetrahedron 1998, 54, 13237–13252.
18. Ponde, D. E.; Deshpande, V. H.; Bulbule, V. J.; Sudalai, A.; Gajare, A. S. J. Org.
Chem. 1998, 63, 1058–1063.
19. Reddy, B. M.; Reddy, V. R.; Manohar, B. Synth. Commun. 1999, 29, 1235–1239.
20. Bandgar, B. P. Uppalla, L..; Sadavarte, V.S Green Chem. 2001, 3, 39–41.
21. Kumar, P.; Pandey, R. K. Synlett 2000, 251–253.
22. Taber, D. F.; Amedio, J. C., Jr.; Patel, Y. K. J. Org. Chem. 1985, 50, 3618.
23. Chavan, S. P.; Shivasankar, K.; Shivappa, R.; Kale, R. Tetrahedron Lett. 2002, 43,
8583–8586.
24. Jin, T.; Zhang, S.; Li, T. Green Chem. 2002, 4, 32–34.
25. Choudary, B. M.; Kantam, M. L.; Reddy, C. V.; Aranganathan, S.; Santhi, P. L.;
Figueras, F. J. Mol. Catal. 2000, 159, 411416.
the fraction of activated molecules compared with normal reac-
tions resulting in higher rates of the reaction. MW irradiation gen-
erates volumetric nature of power dissipation in dielectric, which
causes direct heating inside the sample.33–35 This in situ mode of
energy conversion leads to a fast heating rate with minimized
thermal gradients. This leads to the reduction of the reaction times
rapidly as observed in the present study from several hours
(16–24 h) in the conventional reaction to a few minutes (45 min)
in the MWA reaction.
In conclusion, we have demonstrated that Mn(II) salts such as
sulfate and carbonate could be used as efficient and selective cat-
alysts for the transesterification of b-ketoesters under mild reac-
tion conditions. These catalysts are not only inexpensive but also
available as desktop chemicals in any undergraduate laboratory.
These reagents are operationally simple and environmentally safe
and thus have an advantage over many literature reports. The
new method allows rapid access to diverse esters (–OR) without
using large excess of the corresponding alcohol (often as a solvent).
Ultrasonically assisted methodology reduced reaction times from
16–24 h (under reflux conditions) to about 2.5 h; while microwave
assisted reactions could complete the transesterification within
45 min. We hope that the protocols developed in this part of the
work would become good contribution under non-conventional
conditions. These approaches are environmental friendly in terms
of energy saving and time saving requirements.
26. Bo, Wang; Ming, Yang Li; Shuan, Suo Ji Tetrahedron Lett. 2003, 44, 5037–5039.
27. Reidies, A. H. Manganese Compounds. In Ullmann’s Encyclopedia of Chemical
Technology; John Wiley: New York, 2007.
28. (a) Burke, A.P., Hydrogen peroxide disproportionation and organic compound
oxidation by peroxycarbonate catalyzed by manganese(II): Kinetics and
mechanism, Ph.D., University of Florida, Florida 2005. AAT 319235628.; (b)
Das, A. K. Coord. Chem. Rev. 2001, 213, 307–325; (c) Chowdhury, S.; Roy, S.
Tetrahedron Lett. 1996, 37, 2623–2624; (d) Savanur, A.; Nandibewoor, S.;
Chimatadar, S. Trans. Met. Chem. 2009, 34, 711–718; (e) Ram Reddy, M. K.;
Rajanna, K. C.; Saiprakash, P. K. J. Chem. Sci. 1987, 98, 333–339; (f) Sanjeeva
Reddy, Ch.; Manjari, P. S. Indian J. Chem. 2011, 50A, 979–990; (g) Ember, E.;
Rothbart, S.; Puchta, R.; Van Eldik, R. New J. Chem. 2009, 33, 34–49.
29. (a) Suslick, K. S. Ultrasound: Its Chemical, Physical and Biological Effects; VCH:
New York, 1988; (b) Mason, T. J. Chemistry with Ultrasound; Elsevier Science
Publishers: London, 1990.
30. (a) Singh, V.; Kaur, K. P.; Khurana, A.; Kad, G. L. Resonance 1998, 3, 56–60; (b)
Mason, T. J.; Peters, D. Practical Sonochemistry: Power Ultrasound Uses and
Applications, 2nd Ed.; Harwood Publishing: Chichester, 2003.
31. (a) Bremner, H. Ultrason. Sonochem. 1994, 1, 119–124; (b) Cravotto, G.; Cintas,
P. Chem. Soc. Rev. 2006, 35, 180–196.
Supplementary data
32. Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Tetrahedron 2001, 57, 9225–
9283.
33. Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250–6284.
34. (a) Loupy, A. Microwaves in Organic Synthesis; Wiley-VCH: Weinheim, 2005; (b)
Loupy, A.; Perreux, L.; Liagre, M.; Burle, K.; Moneuse, M. Pure Appl. Chem. 2001,
73, 161–166.
All chemicals used in the experiments were purchased either
from SD fine Chemicals (India), Ranbaxy (India) or Aldrich Chemi-
cals. Pure, ash colored, crystalline manganese carbonate was pur-
chased from Chemical Corporation (Mumbai, India).
35. (a) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford
University Press: New York, 1998; (b) Anastas, P. T.; Williamson, T. C. Green
Chemistry: Designing Chemistry for the Environment; American Chemical
Society: Washington, DC, 1996; (c) Anastas, P. T.; Heine, L. G. Green Chemical
Synthesis and Processes; American Chemical Society: Washington, DC, 2000.
36. General procedure for transesterification under conventional method: A mixture of
b-ketoesters (5 mmol), alcohol (5 mmol), and catalyst (1 mmol) in toluene
(20 mL) was stirred at 100–110 °C in a round bottom flask provided with a
distillation condenser to remove ethanol and the progress of the reaction was
monitored by thin layer chromatography (TLC). Then the reaction mixture was
filtered and the filtrate was concentrated to get crude product, which was
purified by column chromatography on silica gel (ethyl acetate/petroleum
ether, 1:9) to afford the ester as a viscous colorless liquid in good to excellent
yields.
Acknowledgements
The authors thank the authorities of Osmania University,
Hyderabad, Govt. City College, Hyderabad, Rajiv Gandhi University
of Knowledge Technologies, IIIT Basara, and SRTM University, Nan-
ded for constant encouragement. One of the authors (G. Krishna-
iah) thanks CSIR, New Delhi, for support in the form of the CSIR,
JRF fellowship.
References and notes
37. (a) General procedure for ultrasonic assisted transesterification: For ultrasonically
1. Otera, J. Chem. Rev. 1993, 93, 1449–1470.
2. Benetti, S.; Ramgnoli, R.; De Risi, C.; Giampiera, S.; Vinicio, Z. Chem. Rev. 1995,
95, 1065–1114.
3. Lakshmi Kantam, M.; Neeraja, V.; Bharathi, B.; Venkat Reddy, Ch. Catal. Lett.
1999, 62, 67–69.
4. Wang, C. L. J.; Salvino, J. M. Tetrahedron Lett. 1984, 25, 5243–5246.
5. Emmer, G. Tetrahedron 1992, 48, 7165–7172.
6. Magriotis, P. A.; Johnson, F. J. Org. Chem. 1984, 49, 1460–1461.
7. Benbakkar, M.; Baltas, M.; Gorrichon, L.; Gorrishon, J. P. Synth. Commun. 1989,
19, 3241–3247.
8. (a) Bader, A. R.; Cumming, L. O.; Vogel, H. A. J. Am. Chem. Soc. 1951, 73, 4195–
4197; (b) Mottet, C.; Hamelin, O.; Garavel, G.; Depres, J.; Greene, A. E. J. Org.
Chem. 1999, 64, 1380–1382; (c) Gianotti, M.; Martelli, G.; Spunta, G.; Campana,
E.; Panunzio, M.; Mendozza, M. Synth. Commun. 2000, 30, 1725–1730.
9. Witzeman, J. S.; Notingham, W. D. J. Org. Chem. 1991, 56, 1713–1718.
10. Yazawa, H.; Tanaka, K.; Kariyane, K. Tetrahedron Lett. 1974, 15, 3995–3996.
11. Blossey, E. C.; Turner, L. M.; Neckers, D. C. Tetrahedron Lett. 1973, 14, 1823–
1826.
assisted transesterification,
a flask containing a mixture of b-ketoesters
(5 mmol), alcohol (5 mmol), and catalyst (1 mmol) in toluene (20 mL) was
placed in a Sonicator bath at room temperature and the progress of the
reaction was monitored by TLC. Then the reaction mixture was filtered and the
filtrate was concentrated to get the crude product which was purified by
column chromatography on silica gel (ethyl acetate/petroleum ether, ratio?) to
afford the ester as a viscous colorless liquid in excellent yields.
(b) General procedure for microwave assisted transesterification: The synthesis in
the MW oven was performed with a radiation source consisting of a magnetron
tube operating at 2.45 GHz with power output ranging from 0 to 300 W. The
flask containing a mixture of b-ketoesters (5 mmol), alcohol (5 mmol), and
catalyst (1 mmol) in toluene (20 mL) was placed in MW oven. The solutions
were stirred by a magnetic stir bar to ensure high homogeneity. To prevent
thermal gradients the reactions were carried out in 5 mL tubes and the
progress of the reaction was monitored by TLC. Final product was obtained by
using the above mentioned work up.
38. (a) Pearson, R. G. Chemical Hardness; John Wiley-VCH: Weinheim, 1997; (b)
Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533–3539; (c) Pearson, R. G. J. Chem.
Educ. 1968, 45, 581–586
39. (a) Pasini, D.; Righetti, P. P.; Rossi, V. Org. Lett. 2002, 4, 23–26; (b) Garlaschelli,
L.; Messina, I.; Pasini, D.; Righetti, P. P. Eur. J. Org. Chem. 2002, 3385–3392.
12. Taber, D. F.; Amedio, J. C., Jr.; Patel, Y. K. J. Org. Chem. 1985, 50, 3618–3619.
13. Seebach, D.; Thaler, A.; Blaser, D.; Ko, S. Y. Helv. Chim. Acta 1991, 74, 110–116.
}
14. Seebach, D.; Hungerbuhler, E.; Naef, R.; Schnurrenberger, D.; Weidmann, B.;
}
Zugger, M. Synthesis 1982, 138–141.