10.1002/chem.201902009
Chemistry - A European Journal
COMMUNICATION
produce enantioenriched coupling product 3a. The racemization
of 3a would mainly involve an NHC-catalyzed pathway (from
(R)-3a to rac-3a) as suggested from experimental data (see S4–
S7 in the SI). A possible mechanism may involve the insertion of
the carbene (NHC) into the acidic methine C–H bond of 3a
followed by the elimination to give racemic enolates (for a
possible pathway, see Scheme S1).21 The role of NaOTf would
be complexation with NHC in organic phase to capture excess
NHC and store it in water phase, where NHC is gradually
released again into organic phase as the NHC ligand is
consumed. However, even when NaOTf is added, racemization
is not perfectly suppressed (Entries 2 and 3 in Table 1). Other
possible racemization pathways might be involved in the
catalytic cycle such as the one through an equilibrium between
C- and O-bound Pd enolates.22
grant 17H066445. Supercomputing resources at the Institute of
Molecular Science in Japan and the Academic center for
computing at media studies at Kyoto University are also
acknowledged.
Keywords: amino acids • asymmetric synthesis • cross-coupling
• nitrogen heterocycles • regioselectivity
[1]
[2]
a) G. Cardillo, C. Tomasini, Chem. Soc. Rev. 1996, 25, 117–128; b) G.
Lelais, D. Seebach, Biopolymers 2004, 76, 206–243.
a) D. Seebach, J. L. Matthews, Chem. Commun. 1997, 2015–2022; b)
S. H. Gellman, Acc. Chem. Res. 1998, 31, 173–180; c) R. P. Cheng, S.
H. Gellman, W. F. DeGrado, Chem. Rev. 2001, 101, 3219–3232; d) D.
Seebach, A. K. Beck, D. J. Bierbaum, Chem. Biodiver. 2004, 1, 1111–
1239; e) D. Seebach, T. Kimmerlin, R. Šebesta, M. A. Campo, A. K.
Beck, Tetrahedron 2004, 60, 7455–7506; f) D. Seebach, J. Gardiner,
Acc. Chem. Res. 2008, 41, 1366–1375.
[3]
a) E. Juaristi, D. Quintana, J. Escalante, Aldrichimica Acta 1994, 27, 3–
11; b) D. C. Cole, Tetrahedron 1994, 50, 9517–9582; c)
Enantioselective Synthesis of b-Amino Acids (Ed: E. Juaristi), Wiley-
VCH, New York, 1997; d) S. Abele, D. Seebach, Eur. J. Org. Chem.
2000, 1–15; e) M. Liu, M. P. Sibi, Tetrahedron 2002, 58, 7991–8035; f)
F. Gnad, O. Reiser, Chem. Rev. 2003, 103, 1603–1624; g) J. A. Ma,
Angew. Chem. 2003, 115, 4426–4435; Angew. Chem., Int. Ed. Engl.
2003, 42, 4290–4299; h) N. Sewald, Agnew. Chem. 2003, 115, 5972–
5973; Angew. Chem., Int. Ed. Engl. 2003, 42, 5794–5795; i) D.
Seebach, A. K. Beck, S. Capone, G. Deniau, U. Grošelj, E. Zass,
Synthesis 2009, 1–32; j) B. Weiner, W. Szymański, D. B. Janssen, A. J.
Minnaard, B. L. Feringa, Chem. Soc. Rev. 2010, 39, 1656–1691.
a) K. Balenović, D. Cerar, Z. Fuks, J. Chem. Soc. 1952, 3316–3317; b) D.
Gray, C. Concellón, T. Gallagher, J. Org. Chem. 2004, 69, 4849–4851;
c) C. M. Byrne, T. L. Church, J. W. Kramer, G. W. Coates, Angew.
Chem. 2008, 120, 4043–4047; Angew. Chem., Int. Ed. 2008, 47, 3979–
3983.
ArB(OH)2
base, H2O
Ph
Ar
L
Pd
Ph
Ts
Cl
H
N
MeO2C
(S)-1a
CO2Me
H
Pd0–L
NHTs
Ar
(R)-3a
L = NMe2IPr, MeIPr,
or XPhos
a) oxidative addition
d) reductive elimination
CO2Me
CO2Me
[4]
[5]
H
H
—NTs
NHTs
(R)-C
Pd+
Ar
Pd+
L
L
(R)-A
b) proton transfer
& PdOH generation
CO2Me
H
a) H. M. L. Davies, C. Venkataramani, Angew. Chem. 2002, 114, 2301–
2303; Angew. Chem., Int. Ed. 2002, 41, 2197–2199; b) Y. Chi, S. H.
Gellman, J. Am. Chem. Soc. 2006, 128, 6804–6805; c) Y. Chi, E. P.
English, W. C. Pomerantz, W. S. Horne, L. A. Joyce, L. R. Alexander,
W. S. Fleming, E. A. Hopkins, S. H. Gellman, J. Am. Chem. Soc. 2007,
129, 6050–6055; d) N. J. A. Martin, X. Cheng, B. List, J. Am. Chem.
Soc. 2008, 130, 13862–13863; e) Y. Morita, T. Yamamoto, H. Nagai, Y.
Shimizu, M. Kanai, J. Am. Chem. Soc. 2015, 137, 7075–7078; f) J. Xu,
X. Chen, M. Wang, P. Zheng, B.-A. Song, Y. R. Chi, Angew. Chem.
2015, 127, 5250–5254; Angew. Chem., Int. Ed. 2015, 54, 5161–5165.
A. B. Smith, D.-S. Kim, Org. Lett. 2005, 7, 3247–3250.
c) transmetalation
H2O
NHTs
L
Pd
ArB(OH)2 + base
(R)-B (η1-C)
OH
Scheme 1. A plausible catalytic cycle of the cross-coupling.
In conclusion, we have successfully developed a new
catalytic asymmetric synthetic method for enantioenriched b2-
aryl amino acids from commercially available serine esters. The
method is based on a Pd-catalyzed highly regioselective and
enantiospecific ring-opening cross-coupling of aziridine-2-
carboxylates with arylboronic acids. The key to the success was
the use of highly s-donating NHC ligands to promote not only
the oxidative addition step but also transmetalation and
reductive elimination processes. The mechanism of the catalytic
cycle and the selectivity were rationalized by the computational
studies.
[6]
[7]
For Pd-catalyzed cross-couplings of aziridines developed by our group,
see: a) Y. Takeda, Y. Ikeda, A. Kuroda, S. Tanaka, S. Minakata, J. Am.
Chem. Soc. 2014, 136, 8544–8547; b) Y. Takeda, A. Kuroda, W. M. C.
Sameera, K. Morokuma, S. Minakata, Chem. Sci. 2016, 7, 6141–6152.
For Pd-catalyzed cross-couplings of aziridines developed by other
groups, see: a) M. L. Duda, F. E. Michael, J. Am. Chem. Soc. 2013,
135, 18347–18349; b) W. P. Teh, F. E. Michael, Org. Lett. 2017, 19,
1738–1740.
[8]
[9]
For Ni-catalyzed cross-couplings of aziridines developed by other
groups, see: a) C.-Y. Huang, A. G. Doyle, J. Am. Chem. Soc. 2012, 134,
9541–9544; b) D. K. Nielsen, C.-Y. Huang, A. G. Doyle, J. Am. Chem.
Soc. 2013, 135, 13605–13609; c) K. L. Jensen, E. A. Standley, T. F.
Jamison, J. Am. Chem. Soc. 2014, 136, 11145–11152; d) C.-Y. Huang,
A. G. Doyle, J. Am. Chem. Soc. 2015, 137, 5638–5641; e) B. P. Woods,
M. Orlandi, C.-Y. Huang, M. S. Sigman, A. G. Doyle, J. Am. Chem. Soc.
2017, 139, 5688–5691.
Acknowledgements
This work was supported by KAKENHI JP16H01023 in Precisely
Designed Catalysts with Customized Scaffolding. The authors
deeply acknowledge for Prof. Dr. Vincent César (CNRS &
Université de Toulouse, France) for the fruitful advice for the
preparation of IPrNMe2 ligand. WMCS thanks to MEXT KAKENHI
[10] D. Seebach, Angew. Chem. 1979, 91, 259–278; Angew. Chem., Int. Ed.
Engl. 1979, 18, 239–258.
This article is protected by copyright. All rights reserved.