First author et al.
Report
isoindolinones in good yields from easily available starting
materials. This reaction was characterized by employing cheap
catalyst, simple operation, broad substrate scope, 100% atomic
economy and excellent regioselectivity. The gram-scale experiment
rendered this method highly practical in organic synthesis.
Moreover, a detailed computational study on the reaction system
have been performed to clarify the mechanism. Further synthetic
applications are currently undergoing in our laboratory.
2887; (e) Zhang, Y.; Wang, D.-H.; Cui, S.-L. Facile Synthesis of
Isoindolinones via Rh(III)-Catalyzed One-Pot Reaction of Benzamides,
Ketones, and Hydrazines. Org. Lett. 2015, 17, 2494–2497; f) Lu, Y.;
Wang, H.-W.; Spangler, J. E.; Chen, K.; Cui, P.-P.; Zhao, Y.; Sun, W.-Y.;
Yu, J.-Q. Rh(III)-Catalyzed C–H Olefination of N-pentafluoroaryl
Benzamides using Air as the sole Oxidant. Chem. Sci. 2015, 6, 1923–
1927; (g) Zhou, Z.; Liu, G.-X.; Lu, X.-Y. Regiocontrolled Coupling of
Aromatic and Vinylic Amides with α-Allenols To Form γ-Lactams via
Rhodium(III)-Catalyzed C–H Activation. Org. Lett. 2016, 18, 5668−5671;
(h) Wu, X.-W.; Wang, B.; Zhou, Y.; Liu, H. Propargyl Alcohols as One-
Carbon Synthons: Redox-Neutral Rhodium(III)-Catalyzed C–H Bond
Activation for the Synthesis of Isoindolinones Bearing a Quaternary
Carbon. Org. Lett. 2017, 19, 1294−1297; (i) Ji, W.-W.; Lin, E.; Li Q.-J.;
Wang, H.-G. Heteroannulation Enabled by a Bimetallic Rh(III)/Ag(I)
Relay Catalysis: Application in the Total Synthesis of Aristolactam BII.
Chem. Commun. 2017, 53, 5665−5668; (j) Cheng, X.-F.; Wang, T.; Li, Y.;
Wu, Y.; Sheng, J.; Wang, R.; Li, C.; Bian, K.-J.; Wang, X.-S. Palladium(II)-
Catalyzed C(sp2)–H Carbonylation of Sterically Hindered Amines with
Carbon Monoxide. Org. Lett. 2018, 20, 6530−6533; (k) Fu, L.-Y.; Ying,
J.; Qi, X.-X.; Peng, J.-B.; Wu, X.-F. Palladium-Catalyzed Carbonylative
Synthesis of Isoindolinones from Benzylamines with TFBen as the CO
Source. J. Org. Chem. 2019, 84, 1421−1429; (l) Lukasevics, L.; Cizikovs,
A.; Grigorjeva, L. Synthesis of 3-Hydroxymethyl Isoindolinones via
Cobalt-Catalyzed C(sp2)–H Carbonylation of Phenylglycinol Derivatives.
Org. Lett. 2020, 22, 2720–2723; (m) Tian, C.; Dhawa, U.; Scheremetjew,
A.; Ackermann, L. Cupraelectro-Catalyzed Alkyne Annulation: Evidence
for Distinct C–H Alkynylation and Decarboxylative C–H/C–C Manifolds.
ACS Catal. 2019, 9, 7690−7696; (n) Ding, D.; Mou, T.; Feng, M.; Jiang,
X.-F. Utility of Ligand Effect in Homogenous Gold Catalysis: Enabling
Regiodivergent π-Bond-Activated Cyclization. J. Am. Chem. Soc. 2016,
138, 5218-5221.
Experimental
General experimental procedure for products 3a-3r and 5a-5o
(using 3a as an example): To a stirred solution of N-methoxy-3-((3-
phenylprop-2-yn-1-yl)oxy)benzamide 1a (56.2 mg, 0.2 mmol) in
DCE (4 mL) was added HNTf2 ( 11.2 mg, 0.04 mmol) at room
temperature in a sealing tube (10 mL). Next, the reaction mixture
was sealed and heated at 100 °C for 12 h. Then, the solvent was
evaporated in vacuum and purified by silica gel column
chromatography to afford pure desired product 3a (45 mg, 80%) as
a yellow solid.
Supporting Information
The supporting information for this article is available on the
Acknowledgement
We thank Natural Science Foundation of China (21801152 and
21572110) and the Natural Science Foundation of Shandong
Province (ZR2019BB005 and ZR2019MB010) for financial support.
Shao-Fei Ni acknowledge funding from the STU Scientific Research
Foundation for Talents (NTF20022).
Wu, S.-Z.; Wu, X.-Y.; Fu, C.-L.; Ma, S.-M. Rhodium(III)-Catalyzed C–H
Functionalization in Water for Isoindolin-1-one Synthesis. Org. Lett.
2018, 20, 2831-2834.
Zhang, L.-B.; Hao, X.-Q.; Liu, Z.-J.; Zheng, X.-X.; Zhang, S.-K.; Niu, J.-L.;
Song, M.-P. Cobalt(II)-Catalyzed Csp2-H Alkynylation/Annulation with
Terminal Alkynes: Selective Access to 3-Methyleneisoindolin-1-one.
Angew. Chem. Int. Ed. 2015, 54, 10012–10015.
References
(a) Ravikumar, K. Non-steroidal Anti-Inflammatory Drugs. III. Structure
of Indoprofen: 2-[4-(1-oxo-2-isoindolinyl) phenyl] Propionic Acid. Sect.
C: Cryst. Struct. Commun. 1994, 50, 589-592; (b). Reiffen, M.;
Eberlein, W.; Muller, P.; Psiorz, M.; Noll, K.; Heider, J.; Lillie, C.;
Kobinger, W.; Luger, P. Specific Bradycardic Agents. 1. Chemistry,
Pharmacology, and Structure-Activity Relationships of Substituted
Benzazepinones, a new Class of Compounds Exerting Antiischemic
Properties. J. Med. Chem. 1990, 33, 1496-1504; (c) Volpe, R.; Mautner,
L. S. Chlorthalidone, a new Oral Diuretic: Preliminary Report. Appl.
Ther. 1961, 3, 521-528; (d) Li, E.-W.; Jiang, L.-H.; Guo, L.; Zhang, H.; Che,
Y.-S. Pestalachlorides A–C, Antifungal Metabolites from the Plant
Endophytic Fungus Pestalotiopsis Adusta. Bioorg. Med. Chem. 2008,
16, 7894-7899.
(a) Li, Y.; Li, J.-H. Decarbonylative Formation of Homoallyl Radical
Capable of Annulation with N-Arylpropiolamides via Aldehyde Auto-
oxidation. Org. Lett. 2018, 20, 5323–5325; (b) Tan, F.-L.; Hu, M.; Song,
R.-J.; Li, J. H. Metal-Free Annulation Cascades of 1,7-Enynes Using Di-
tert-butyl Peroxide as the Methyl Source towards the Synthesis of
Polyheterocyclic Scaffolds. Adv. Synth. Catal. 2017, 359, 3602-3610; (c)
Niu, Z.-J.; Li, L.-H.; Liu, X.-Y.; Liang, Y.-M. Transition-Metal-Free
Alkylation/Arylation of Benzoxazole via Tf2O-Activated-Amide. Adv.
Synth. Catal. 2019, 361, 5217 –5222; (d) Li, L.-H.; Niu, Z.-J.; Li, Y.-X.;
Liang, Y.-M. Transition-Metal-Free Multinitrogenation of Amides by C–
C Bond Cleavage: a new Approach to Tetrazoles. Chem. Commun. 2018,
54, 11148-11151; (e) Kuang, Z.; Yang, K.; Zhou, Y.; Song, Q. Base-
Promoted Domino-Borylation-Protodeboronation Strategy. Chem.
Commun. 2020, 56, 6469-6479; (f) Zhang, J.-J.; Cheng, Y.-B.; Duan, X.-
H. Metal-Free Oxidative Decarboxylative Acylation/Ring Expansion of
Vinylcyclobutanols with α-Keto Acids by Visible Light Photoredox
Catalysis. Chin. J. Chem. 2017, 35, 311-315; (g) Tang, B.-Z.; Li, J.-Z.;
Zhang, A.-W.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Merging [2+2]
Cycloaddition with 1,6-/1,4-Aza-Binucleophilic Additions toward
Unprecedented Indazole-Containing Polycycles. Adv. Synth. Catal.
2019, 361, 3394 –3402; (h) Zhang, Z.; Zhu, C. -J.; Miao, M.; Han, J. -L.;
Ju, T.; Song, L.; Ye, J. -H.; Li, J.; Yu, D. -G. Lactonization of C(sp2)—H
Bonds in Enamides with CO2. Chin. J. Chem. 2018, 36, 430-436.
Zhao, W.-X.; Sun, J.-W. Triflimide (HNTf2) in Organic Synthesis. Chem.
Rev. 2018, 118, 10349-10392.
(a) Glavac, D.; Zheng, C.; Dokli, I.; You, S.-Li.; Gredicak, M. Chiral
Brønsted Acid Catalyzed Enantioselective aza-Friedel–Crafts Reaction
of Cyclic α-Diaryl N-Acyl Imines with Indoles. J. Org. Chem. 2017, 82,
8752−8760; (b) Ray, S. K.; Sadhu, M. M.; Biswas, R. G.; Unhale, R. A.;
Singh, V. K.
A General Catalytic Route to Enantioenriched
Isoindolinones and Phthalides: Application in the Synthesis of (S)-PD
172938. Org. Lett. 2019, 21, 417−422.
(a) Wang, F.; Song, G.-Y.; Li, X.-W. Rh(III)-Catalyzed Tandem Oxidative
Olefination−Michael Reactions between Aryl Carboxamides and
Alkenes. Org. Lett. 2010, 12, 5430–5433; (b) Hyster, T. K.; Ruhl, K. E.;
Rovis, T. A Coupling of Benzamides and Donor/Acceptor Diazo
Compounds To Form γ-Lactams via Rh(III)-Catalyzed C–H Activation. J.
Am. Chem. Soc. 2013, 135, 5364–5367; (c) Ye, B.-H.; Cramer, N.
Asymmetric Synthesis of Isoindolones by Chiral Cyclopentadienyl-
Rhodium(III)-Catalyzed C-H Functionalizations. Angew. Chem. Int. Ed.
2014, 53, 7896–7899; (d) Dong, J.-X.; Wang, F.; You, J.-S. Copper-
Mediated Tandem Oxidative C(sp2)–H/C(sp)–H Alkynylation and
Annulation of Arenes with Terminal Alkynes. Org. Lett. 2014, 16, 2884–
(a) Mendoza, O.; Rossey, G.; Ghosez, L. Brönsted Acid-Catalyzed
Synthesis of Diarylmethanes under Non-Genotoxic Conditions.
Tetrahedron Lett. 2011, 52, 2235−2239; (b) Nomiyama, S.; Tsuchimoto,
© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2019, 37, XXX-XXX