H. Miyachi et al. / Bioorg. Med. Chem. Lett. 12 (2002) 333–335
335
Table 1. Transactivation and binding activities of the enantiomers of
5 with human PPARs
References and Notes
Transactivation (EC50 mM)a Binding (IC50 mM)a
1. Porte, D., Jr.; Schwartz, M. W. Science 1996, 272, 699.
2. Keller, H.; Dreyer, C.; Medin, J.; Mahoudi, A.; Ozato, K.;
Wahli, W. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 2160.
3. Kliewer, S. A.; Umesono, K.; Noonan, D. J.; Heyman,
R. A.; Evans, R. M. Nature (London) 1992, 358, 771.
4. Staels, B.; Auwerx, J. Curr. Pharm. Des. 1997, 3, 1.
5. Isseman, I.; Green, S. Nature (London) 1990, 347, 771.
6. Staels, B.; Dallongeville, J.; Auwerx, J.; Schoonjans, E.;
Leitersdorf, E.; Fruchart, J.-C. Circulations 1998, 98, 2088.
7. Lee, S. S.; Pineau, T.; Drago, J.; Lee, E. L.; Owens, J. W.;
Kroetz, D. L.; Fernandez-Salguero, P. M.; Westphal, H.;
Gonzalez, F. J. Mol. Cell. Biol. 1995, 15, 3012.
Compd Config.
PPARa
PPARg
PPARa
PPARg
(À)-5
(R)
(S)
1.5
0.06
>15
14
24
0.74
>50
44
(+)-5
aTransient transactivation activity and binding activity of the above
compounds on human PPARa and human PPARg were performed
using the previously reported method.17
In this study, we investigated the enantio-dependency of
the human PPARa-selective agonist 5 and found that
the PPARa transactivation and binding activities reside
almost exclusively in the (S)-enantiomer.
8. Fruchart, J.-C.; Duriez, P.; Staels, B. Curr. Opin. Lipidol.
1999, 10, 245.
9. Forman, B. M.; Chen, J.; Evans, R. M. Proc. Natl. Acad.
Sci. U.S.A. 1997, 94, 4312.
10. (a) Nomura, M.; Takahashi, Y.; Tanase, T.; Miyachi, H.;
Ide, T.; Tsunoda, M.; Murakami, K. PCT Int. Appl. WO 00/
75103 (b) Miyachi, H.; Nomura, M.; Tanase, T.; Takahashi,
Y.; Ide, T.; Tsunoda, M.; Murakami, K.; Awano, K. Bioorg.
Med. Chem. Lett. 2002, 12, 77.
11. Boie, Y.; Mohammed, A.; Rushmore, T. H.; Kennedy,
B. P. J. Biol. Chem. 1993, 268, 5530.
12. Rsngwala, S. M.; Shamina, M.; O’Brien, M. L.; Tortor-
ella, V.; Longo, A.; Loiodice, F.; Noonan, D. J.; Feller, D. R.
Chirality 1997, 9, 37.
In the case of rosiglitazone (Chart 1), a potent and
selective PPARg agonist used for the treatment of non-
insulin dependent diabetes mellitus (type II diabetes),
enantio-dependency was also noted, and (S)-rosiglita-
zone exhibited much more potent binding to PPARg
than (R)-rosiglitazone.19 However, the enantio-depen-
dency of (S)-rosiglitazone decreased time-dependently,
probably due to rapid racemization at the C-5 position
of the thiazolidine-2,4-dione ring at physiological pH.20
13. Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem.
Soc. 1982, 104, 1737. ꢀ
A recent X-ray crystallographic analysis of the rosigli-
tazone–human PPARg complex indicated that the sul-
ꢀ
14. (À)-5: [a]D À24 (C 0.40, MeOH), (+)-5: [a]D +24
(C 0.80, MeOH). Analysis of the enantiomeric excess was
performed with a HPLC equipped with a Chirapac OD
column.
15. Meyers, A. I.; Knaus, G.; Kamata, K.; Ford, M. E. J. Am.
Chem. Soc. 1976, 98, 567.
16. The [a]D of (R)-5, prepared from (R)-2-benzylbutanoic
acid, with 92% ee was À21ꢀ (C 0.18, MeOH). The enantio-
meric excess of (R)-5, which was estimated to be about 85%
ee, indicated that a slight epimerization occurred during the
synthesis of (R)-5.
17. Murakami, K.; Tobe, K.; Ide, T.; Mochizuki, T.; Ohashi,
M.; Akanuma, Y.; Yazaki, Y.; Kadowaki, T. Diabetes 1998,
47, 1841.
fur atom of (S)-rosiglitazone is positioned in
a
hydrophobic region of the PPARg ligand-binding
pocket, surrounded by the side chains of the amino
acids F363, Q286, F282, and L469.21 Because the three-
dimensional structures of the ligand-binding domains of
members of the nuclear receptor superfamily are
thought to be well conserved,22 we speculate that the side
chain ethyl group of (S)-5 interacts hydrophobically with
the corresponding hydrophobic region of the PPARa
ligand-binding pocket, although the three-dimensional
structure of human PPARa is not known.23
18. HPLC analysis was performed on Chirapac OD
(0.0046Â0.25 m, flow rate 1.00 mL/min, UV 254 nm, n-hex-
ane/i-PrOH/TFA=95:5:0.2 v/v/v as the eluant).
19. Parks, D. J.; Tomkinson, N. C. O.; Villeneuve, M. S.;
Blanchard, S. G.; Willson, T. M. Bioorg. Med. Chem. Lett.
1998, 8, 3657.
20. Sohda, T.; Mizuno, K.; Kawamatsu, Y. Chem. Pharm.
Bull. 1984, 32, 4460.
21. Nolte, C.; Wisely, G. B.; Westin, S.; Cobb, J. E.; Lambert,
M. H.; Kurokawa, R.; Rosenfeld, M. G.; Willson, T. M.;
Glass, C. K.; Milburn, M. V. Nature (London) 1998, 3958,
137.
22. Uppenberg, J.; Svensson, C.; Jaki, M.; Bertilsson, G.;
Jendeberg, L.; Berkenstam, A. J. Biol. Chem. 1998, 273, 31108.
23. Recently, the X-ray crystal structure of the ligand bind-
ing domain of human PPARa was disclosed. Cronet, P.;
Petersen, J. F. W.; Folmer, R.; Blomberg, N.; Sjoblom, K.;
Karlsson, U.; Lindstedt, E. L.; Bamberg, K. Structure 2001,
9, 699.
In conclusion, 5 shows enantio-dependent transactiva-
tion and binding activities to human PPARa. The
activities were found to reside almost exclusively in the
(S)-enantiomer. Further in vivo pharmacological eva-
luation of the (S)-form of 5 and related compounds, and
a more detailed structure–activity relationship study in
combination with computer-aided molecular modeling
are in progress.
Acknowledgements
The authors wish to thank H. Saito and H. Furuta of
Kyorin Pharmaceutical Co., Ltd., for their analytical
work. Thanks are also due to T. Ide, M. Tsunoda, T.
Nakazawa and W. Hori of Kyorin Pharmaceutical Co.,
Ltd., for their technical assistance.