to be important for conferring biological activity, is also
found in some other natural products, including the chon-
driamides, zampanolide, and the proteasome inhibitors TMC-
95.9
alternative would be the formation of the C10-C11 bond
by a cross-coupling reaction. In this paper we show that
indeed a sequence of a diastereoselective hydroboration
followed by Suzuki coupling16,17 allows for the formation
of the salicylihalamide core structure.
Initial studies focused on the Suzuki coupling on a model
system. First, the benzoic acid 6 with a iodopropenyl side
chain was prepared from the known acid 3.11e Esterification
of 3 with dimethylformamide-di-tert-butyl acetal18 (Scheme
1) followed by ozonolysis gave the aldehyde 4. A subsequent
From a synthetic point of view the benzolactone enamides
represent challenging targets. In the meantime, total syntheses
of apicularen A10 and salicylihalamide11 were reported. In
addition, synthetic approaches to the core structure of these
natural products12,13 and studies aimed at the enamide side
chains14 have been published. The macrolactone portion of
salicylihalamide is unique in that it features a double bond
in an allylic position to the aromatic ring. A classical
macrolactonization approach is difficult as a result of steric
hindrance of the carboxylic group and participation of the
double bond. However, if the double bond is of a styrene
type, the macrolactonization works in acceptable yields.15
So far all successful approaches to salicylihalamide are based
on an intramolecular ring-closing metathesis reaction. We
asked ourselves how one would synthesize this molecule if
the ring-closing metathesis were not known. According to
the retrosynthetic analysis (Figure 2) we opted for formation
Scheme 1. Synthesis of Acid 6 and Propenol 9
Takai reaction19 of 4 gave the vinyl iodide 5 (E/Z ) 4:1).
The acid 6 was obtained by treatment of the ester 5 with
trifluoroacetic acid. It was important to employ the tert-butyl
ester 5 because a basic hydrolysis of the ester group (on the
corresponding methyl ester) is not survived by the vinyl
iodide. The pentenol derivative 9 was prepared in racemic
Figure 2. Retrosynthetic analysis for salicylihalamide A based on
a Suzuki coupling to form the C10-C11 bond.
(12) Salicylihalamide studies: (a) Fu¨rstner, A.; Seidel, G.; Kindler, N.
Tetrahedron 1999, 55, 8215-8230. (b) Fu¨rstner, A.; Thiel, O. R.; Blanda,
G. Org. Lett. 2000, 2, 3731-3734. (c) Feutrill, J. T.; Holloway, G. A.;
Hilli, F.; Hu¨gel, H. M.; Rizzacasa, M. A. Tetrahedron Lett. 2000, 41, 8569-
8572. (d) Georg, G. I.; Ahn, Y. M.; Blackman, B.; Farokhi, F.; Flaherty, P.
T.; Mossman, C. J.; Roy, S.; Yang, K. J. Chem. Soc., Chem. Commun.
2001, 255-256.
(13) (a) Bhattacharjee, A.; De Brabander, J. K. Tetrahedron Lett. 2000,
41, 8069-8073. (b) Ku¨hnert, S. M.; Maier, M. E. Org. Lett. 2002, 4, 643-
646.
of a vinylic C-C bond, either in an inter- or intramolecular
fashion. The ester bond would be formed by a Mitsunobu
reaction. The creation of the C8-C9 bond has been described
in the literature but suffers from moderate yield.11f Another
(7) Suzumura, K.-i.; Takahashi, I.; Matsumoto, H.; Nagai, K.; Setiawan,
B.; Rantiatmodjo, R. M.; Suzuki, K.-i.; Nagano, N. Tetrahedron Lett. 1997,
38, 7573-7576.
(14) (a) Kuramochi, K.; Watanabe, H.; Kitahara, T. Synlett 2000, 397-
399. (b) Snider, B. B.; Song, F. Org. Lett. 2000, 2, 407-408. (c) Shen, R.;
Porco, J. A., Jr. Org. Lett. 2000, 2, 1333-1336. (d) Stefanuti, I.; Smith, S.
A.; Taylor, R. J. K. Tetrahedron Lett. 2000, 41, 3737-3738. (e) Fu¨rstner,
A.; Brehm, C.; Cancho-Grande, Y. Org. Lett. 2001, 3, 3955-3957.
(15) We prepared the macrocyclic core of salicylihalamide with the
double bond in vinylic position using a macrolactonization strategy. Bauer,
M. Unpublished results.
(16) For reviews, see: (a) Miyaura, N.; Suzuki, A. Chem. ReV. 1995,
95, 2457-2483. (b) Chemler, S. R.; Trauner, D.; Danishefsky, S. J. Angew.
Chem. 2001, 113, 4676-4701; Angew. Chem., Int. Ed. 2001, 40, 4544-
4568.
(8) Dekker, K. A.; Aiello, R. J.; Hirai, H.; Inagaki, T.; Sakakibara, T.;
Suzuki, Y.; Thompson, J. F.; Yamauchi, Y.; Kojima, N. J. Antibiot. 1998,
51, 14-20.
(9) Kohno, J.; Koguchi, Y.; Nishio, M.; Nakao, K.; Kuroda, M.; Shimizu,
R.; Ohnuki, T.; Komatsubara, S. J. Org. Chem. 2000, 65, 990-995.
(10) (a) Bhattacharjee, A.; Seguil, O. R.; De Brabander, J. K. Tetrahedron
Lett. 2001, 42, 1217-1220. (b) Lewis, A.; Stefanuti, I.; Swain, S. A.; Smith,
S. A.; Taylor, R. J. K. Tetrahedron Lett. 2001, 42, 5549-5552.
(11) (a) Wu, Y.; Esser, L.; De Brabander, J. K. Angew. Chem. 2000,
112, 4478-4480. (b) Labrecque, D.; Charron, S.; Rej, R.; Blais, C.;
Lamothe, S. Tetrahedron Lett. 2001, 42, 2645-2648. (c) Snider, B. B.;
Song, F. Org. Lett. 2001, 3, 1817-1820. (d) Fu¨rstner, A.; Dierkes, T.; Thiel,
O.; Blanda, G. Chem. Eur. J. 2001, 7, 5286-5298. (e) Smith, A. B., III;
Zheng, J. Synlett 2001, 1019-1023. (f) Wu, Y.; Liao, X.; Wang, R.; Xie,
X.-S.; De Brabander, J. K. J. Am. Chem. Soc. 2002, 124, 3245-3253.
(17) For recent examples, see: (a) Kallan, N. C.; Halcomb, R. L. Org.
Lett. 2000, 2, 2687-2690. (b) Chemler, S. R.; Danishefsky, S. J. Org. Lett.
2000, 2, 2695-2698.
(18) Widmer, U. Synthesis 1983, 135-136.
(19) Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108,
7408-7410.
2206
Org. Lett., Vol. 4, No. 13, 2002