Paper
Dalton Transactions
2 For an example of the synthesis and utilization of active
M. S. Hill, D. J. Liptrot, D. J. MacDougall and M. F. Mahon,
forms of binary alkali–metal hydrides in metalation and
Chem. Commun., 2011, 47, 9060–9062.
reduction reactions see R. Pi, T. Friedl, P. v. R. Schleyer, 13 (a) H. J. Cowley, M. S. Holt, R. L. Melen, J. M. Rawson and
P. Klusener and L. Brandsma, J. Org. Chem., 1987, 52,
4299–4303.
3 (a) L. Schlapbach and A. Züttel, Nature, 2001, 414, 353–358;
(b) F. Schüth, B. Bogdanovic and M. Felderhoff, Chem.
Commun., 2004, 2249–2258; (c) B. Sakintuna, F. Lamari-
D. S. Wright, Chem. Commun., 2011, 47, 2682–2684;
(b) M. M. Hansmann, R. L. Melen and D. S. Wright, Chem.
Sci., 2011, 2, 1554–1559; (c) R. J. Less, H. R. Simmonds,
S. B. J. Dane and D. S. Wright, Dalton Trans., 2013, 42,
6337–6343.
Darkrim and M. Hirscher, Int. J. Hydrogen Energy, 2007, 32, 14 (a) J. Spielmann, M. Bolte and S. Harder, Chem. Commun.,
1121–1140; (d) I. P. Jain, C. Lal and A. Jain, Int. J. Hydrogen
Energy, 2010, 35, 5133–5144.
2009, 6934–6936; (b) For an excellent overview of the
thermal decomposition of magnesium amido–borane com-
plexes see: J. Spielmann, D. F.-J. Piesik and S. Harder,
Chem. – Eur. J., 2010, 16, 8307–8318; (c) J. Spielmann and
S. Harder, Dalton Trans., 2011, 40, 8314–8319;
(d) S. Harder, J. Spielmann and J. Intemann, Dalton Trans.,
2014, 43, 14284–14290.
4 (a) H. Hao, C. Cui, H. W. Roesky, G. Bai, H.-G. Schmidt and
M. Noltemeyer, Chem. Commun., 2001, 1118–1119;
(b) S. P. Green, C. Jones and A. Stasch, Angew. Chem., Int.
Ed., 2008, 47, 9079–9083; (c) J. Spielmann, D. Piesik,
B. Wittkamp, G. Jansen and S. Harder, Chem. Commun.,
2009, 3455–3456; (d) S. Schulz, T. Eisenmann, 15 D. R. Armstrong, A. M. Drummond, L. Balloch,
D. Schuchmann, M. Bolte, M. Kirchner, R. Boese,
J. Spielmann and S. Harder, Z. Naturforsch., 2009, 64b,
D. V. Graham, E. Hevia and A. R. Kennedy, Organometallics,
2008, 27, 5860–5866.
1397–1400; (e) S. Harder, J. Spielmann, J. Intemann and 16 (a) M. Krieger, B. Neumüller and K. Dehnicke, Z. Anorg.
H. Bandmann, Angew. Chem., Int. Ed., 2011, 50, 4156–4160.
5 (a) M. Arrowsmith, M. S. Hill, D. J. MacDougall and
M. F. Mahon, Angew. Chem., Int. Ed., 2009, 48, 4013–4016;
(b) A. Rit, T. P. Spaniol, L. Maron and J. Okuda, Angew.
Chem., Int. Ed., 2013, 52, 4664–4667; (c) A. Rit,
T. P. Spaniol, L. Maron and J. Okuda, Organometallics,
2014, 33, 2039–2047; (d) A. Rit, T. P. Spaniol and J. Okuda,
Chem. – Asian J., 2014, 9, 612–619; (e) A. Rit, A. Zanardi,
T. P. Spaniol, L. Maron and J. Okuda, Angew. Chem., Int.
Ed., 2014, 53, 13273–13277; (f) P. A. Lummis,
Allg. Chem., 1998, 624, 1563–1564; (b) W. Marciniak,
K. Merz, M. Moreno and M. Driess, Organometallics, 2006,
25, 4931–4933; (c) B. Gutschank, S. Schulz, D. Bläser,
R. Boese and C. Wölper, Organometallics, 2010, 29, 6133–
6136; (d) For a related {Zn5H6} cluster see: M. P. Coles,
S. M. El-Hamruni, J. D. Smith and P. B. Hitchcock, Angew.
Chem., Int. Ed., 2008, 47, 10147–10150; (e) For a related
{Zn5H4} cluster see: M. Kahnes, H. Görls, L. González
and M. Westerhausen, Organometallics, 2010, 29, 3098–
3108.
M. R. Momeni, M. W. Lui, R. McDonald, M. J. Ferguson, 17 (a) P. L. Arnold, I. J. Casely, Z. R. Turner, R. Bellabarba and
M. Miskolzie, A. Brown and E. Rivard, Angew. Chem., Int.
Ed., 2014, 53, 9347–9351; (g) P. Jochmann and
D. W. Stephan, Angew. Chem., Int. Ed., 2013, 52, 9831–9835.
6 P. C. Andrikopolous, D. R. Armstrong, A. R. Kennedy,
R. B. Tooze, Dalton Trans., 2009, 7236–7247;
(b) D. R. Armstrong, S. E. Baillie, V. L. Blair, N. G. Chabloz,
J. Diez, J. Garcia-Alvarez, A. R. Kennedy, S. D. Robertson
and E. Hevia, Chem. Sci., 2013, 4, 4259–4266.
R. E. Mulvey, C. T. O’Hara and R. B. Rowlings, Eur. J. Inorg. 18 This chemical shift is close to that of the related species
Chem., 2003, 3354–3362.
7 D. J. Liptrot, M. S. Hill and M. F. Mahon, Chem. – Eur. J.,
2014, 20, 9871–9874.
(sBu2N)B(H)-HMDS which resonates at 35.2 ppm:
W. R. Nutt and R. L. Wells, Inorg. Chem., 1982, 21, 2473–
2476.
8 (a) A. Staubitz, A. P. M. Robertson, M. E. Sloan and 19 Although the formation of a Zn bis(amidoborane) inter-
I. Manners, Chem. Rev., 2010, 110, 4023–4078;
(b) A. Staubitz, A. P. M. Robertson and I. Manners, Chem.
Rev., 2010, 110, 4079–4124.
9 R. J. Less, R. L. Melen and D. S. Wright, RSC Adv., 2012, 2,
2191–2199.
10 H. C. Johnson, E. M. Leitao, G. R. Whittell, I. Manners,
G. C. Lloyd-Jones and A. S. Weller, J. Am. Chem. Soc., 2014,
136, 9078–9093 and references therein.
11 (a) J. Spielmann, G. Jansen, H. Bandmann and S. Harder,
Angew. Chem., Int. Ed., 2008, 47, 6290–6295; (b) S. Harder,
J. Spielmann and B. Tobey, Chem. – Eur. J., 2012, 18, 1984–
1991.
mediate, as the result of the reaction of Zn(HMDS)2 with 2
equivalents of DMAB, cannot be discounted, considering
the stoichiometry and mild reaction conditions employed
such a scenario sounds unlikely.
20 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb,
A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg,
Organometallics, 2010, 29, 2176–2179.
21 11B NMR analysis of crudes and filtrates of the reaction
showed no indication of the formation of cyclic dimeric
species [R2NBH2]2 which have been previously observed as
the ultimate product in some metal-catalysed dehydro-
coupling processes of secondary aminoboranes, see for
examples ref. 12a and b.
12 (a) D. J. Liptrot, M. S. Hill, M. F. Mahon and
D. J. MacDougall, Chem. – Eur. J., 2010, 16, 8508–8515; 22 We note that during the preparation of this manuscript the
(b) M. S. Hill, M. Hodgson, D. J. Liptrot and M. F. Mahon,
Dalton Trans., 2011, 40, 7783–7790; (c) P. Belham,
first NHC adduct of Zn(HMDS)2 was reported, using ItBu
as the carbene. See: A. Baishya, M. K. Barman, T. Peddarao
Dalton Trans.
This journal is © The Royal Society of Chemistry 2015