416
Y.-Q. Fang et al.
LETTER
dependent behavior of this reaction, we favor the ionic
pathway B, which is consistent with all the evidence.
CHO
NO2
Br
(O)P(Oi-Pr)3
+
Br2P(Oi-Pr)3
CBr4, P(Oi-Pr)3
+
Br
CH2Cl2, 0 °C
NO2
87%
Initial attack of phosphite to CBr4 results in a tribromo-
mixture
–
1a
methyl anion (CBr3 ), which probably exists as a close ion
pair with the generated phosphonium or as a pentavalent
phosphorus species. Attack of the aldehyde or ketone by
1. HCl (6 M, reflux)
2. NaHCO3
–
the CBr3 anion results in an alkoxide, which in the case
Br
of a-bromoacetophenone (3) gives epoxide 4. This also
explains why acyl cyanide afforded low yield under our
conditions since cyanide is a good leaving group under
Br
NO2
2a
–
CBr3 attack. Otherwise, the alkoxide reacts with the
pure according to 1H NMR
phosphonium to form 8. The second molecule of phos-
phite attacks the bromide in 8 to give the normal olefina-
tion product. The intermediate 8 can also undergo an
Arbuzov dealkylation to form a phosphate 9. In the case
of the alkynyl substrate 5, the phosphate further under-
goes an E2-elimination to afford the observed vinyl phos-
Scheme 5 Preparation of 2a without chromatographic separation
Acknowledgment
This work was supported by NSERC (Canada), Merck Frosst Cana-
phate 7, presumably due to the high acidity of the da, and the University of Toronto. We also thank Dr. Alan Lough
for X-ray structure determination. Y.-Q. F. thanks the Ontario Go-
propargylic proton.
vernment and the University of Toronto for financial support in the
form of postgraduate scholarships (OGS, OGSST).
Shifting the mechanism from an ylide pathway to anionic
pathways is presumably due to the change of relative sta-
bility of the phosphonium ion 10 and 11. Due to their
strong electron-withdrawing inductive while poor elec-
References and Notes
tron-donating effects of oxygens on the phosphorus, the
positive charge of phosphonium ion 10 is localized only
on phosphorus, destabilizing the intermediate. However,
for the bromophosphonium 11, its stability is improved
through resonance structures (Figure 1).
(1) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 36, 3769.
(2) Kumada and Negishi coupling: (a) Minato, A.; Suzuki, K.;
Tamao, K. J. Am. Chem. Soc. 1987, 109, 1257. (b) Minato,
A. J. Org. Chem. 1991, 56, 4052. (c) Zeng, X.; Qian, M.;
Hu, Q.; Negishi, E. Angew. Chem. Int. Ed. 2004, 43, 2259.
Suzuki coupling: (d) Roush, W. R.; Moriarty, K. J.; Brown,
B. B. Tetrahedron Lett. 1990, 31, 6509. (e) Evans, D. A.;
Starr, J. T. J. Am. Chem. Soc. 2003, 125, 13531.
RO
RO
RO
+
Br
+
P
+
CBr3
P
Br
P
RO
RO
RO
RO
RO
RO
(f) Molander, G. A.; Yokoyama, Y. J. Org. Chem. 2006, 71,
2493. (g) Reed, M. A.; Chang, M. T.; Snieckus, V. Org. Lett.
2004, 6, 2297. Hydride reduction: (h) Uenishi, J.;
Kawahama, R.; Yonemitsu, O.; Tsuji, J. J. Org. Chem. 1998,
63, 8965.
10
destablized
11
stabilized
Figure 1 Comparison of possible phosphonium ion intermediates
(3) (a) Soderquist, J. A.; Leon, G.; Colberg, J. C.; Martinez, I.
Tetrahedron Lett. 1995, 36, 3119. (b) Shen, W.; Wang, L.
J. Org. Chem. 1999, 64, 8873. (c) Wang, L.; Shen, W.
Tetrahedron Lett. 1998, 39, 7625. (d) Thielges, S.; Meddah,
E.; Bisseret, P.; Eustache, J. Tetrahedron Lett. 2004, 45, 907.
(4) (a) Elliot, M.; Farnham, A. W.; Janes, N. F.; Needham, P. H.;
Pulman, D. A. Nature (London) 1974, 248, 710. (b) Elliot,
M.; Janes, N. F. Chem. Soc. Rev. 1978, 7, 473.
(5) Ramirez, F.; Desal, N. B.; McKelvie, N. J. Am. Chem. Soc.
1962, 84, 1745.
(6) Grandjean, D.; Pale, P.; Chuche, J. Tetrahedron Lett. 1994,
35, 3529.
Since the byproducts from triisopropylphosphite-mediat-
ed reaction are oils, the gem-dibromoolefinated products
such as 2 can be purified by recrystallization. A conve-
nient alternative protocol is a simple treatment of the
crude reaction mixture with acid, which hydrolyzes triiso-
propylphosphate into nonhazardous phosphoric acid and
isopropanol (Scheme 5), giving analytically pure product
2 in good yield after a simple acid/base workup.
(7) (a) Korotchenko, V. N.; Shastin, A. V.; Nenajdenko, V. G.;
Balenkova, E. S. J. Chem. Soc., Perkin Trans. 1 2002, 883.
(b) Rezaei, H.; Normant, J. F. Synthesis 2000, 1, 109.
(8) (a) Fang, Y.-Q.; Lautens, M. Org. Lett. 2005, 7, 3549.
(b) Lautens, M.; Fang, Y. WO 06047888, 2006; Chem.
Abstr. 2006, 144, 468020. (c) Fayol, A.; Fang, Y.-Q.;
Lautens, M. Org. Lett. 2006, 8, 4203. (d) Nagamochi, M.;
Fang, Y.-Q.; Lautens, M. Org. Lett. 2007, 9, 2955.
(e) Yuen, J.; Fang, Y.-Q.; Lautens, M. Org. Lett. 2006, 8,
653. (f) Fang, Y.-Q.; Yuen, J.; Lautens, M. J. Org. Chem.
2007, 72, 5152. (g) Fang, Y.-Q.; Karisch, R.; Lautens, M.
J. Org. Chem. 2007, 72, 1341.
In summary, we have developed a Horner–Wadsworth–
Emmons equivalent of the Ramirez olefination of ketones
and aldehydes using triisopropylphosphite. In general, the
reactivity of triisopropylphosphite toward gem-dibro-
moolefination is comparable to PPh3 with aldehydes and
higher than PPh3 with ketones. This phosphite-mediated
reaction likely proceeds through an ionic mechanism rath-
er than an ylide intermediate observed in PPh3-mediated
reactions.
(9) General Procedure for Ramirez Olefination
To a solution of 1a (0.151 g, 1 mmol) and CBr4 (0.49 g, 1.5
mmol) in CH2Cl2 (4 mL) was added dropwise a solution of
Synlett 2008, No. 3, 413–417 © Thieme Stuttgart · New York