10.1002/chem.202000338
Chemistry - A European Journal
RESEARCH ARTICLE
[12] T. Wurm, J. Bucher, S. B. Duckworth, M. Rudolph, F. Rominger, H. A.
S. K., . Angew. Chem. Int. Ed. 2017, 56, 3364-3368.
[13] T. Wurm, J. Bucher, M. Rudolph, F. Rominger, A. S. K. Hashmi, Adv.
Synth. Catal. 2017, 359, 1637-1642.
[14] F. Effenberger, Angew. Chem. Int. Ed. 1969, 8, 295-312.
[15] a) E. J. Goethals, N. Haucourt, L.-B. Peng, Macromol. Symp. 1994, 85,
97-113; b) M. Ouchi, H. Kammiyada, M. Sawamoto, Polym. Chem. 2017, 8,
4970-4977; c) S. Aoshima, S. Kanaoka, Chem. Rev. 2009, 109, 5245-5287.
[16] D. J. Winternheimer, R. E. Shade, C. C. A. Merlic, Synthesis 2010,
2010, 2497-2511.
with an otherwise hard to access fulvene ether moiety can be
prepared in good yield. The explored transformations show that
in most cases a selective functionalization at the vinyloxy
functionality and not the fulvene backbone is feasible. With this in
mind these building blocks might also be of interest as monomers
in polymer science.
[17] W. Reppe, Justus Liebigs Ann. Chem. 1956, 601, 81-138.
[18] J. Barluenga, F. Aznar, M. Bayod, Synthesis 1988, 1988, 144-146.
[19] Y. Kataoka, O. Matsumoto, K. Tani, Chem. Lett. 1996, 25, 727-728.
[20] C. Gemel, G. Trimmel, C. Slugovc, S. Kremel, K. Mereiter, R. Schmid,
K. Kirchner, Organometallics 1996, 15, 3998-4004.
The influence of solvent and potential applications for
6-(vinyloxy)fulvene are currently under investigation.
[21] a) J. H. Teles, S. Brode, M. Chabanas, Angew. Chem. Int. Ed. 1998,
37, 1415-1418; Angew. Chem. 1998, 110, 1475-1478; b) Y. Fukuda, K.
Utimoto, J. Org. Chem. 1991, 56, 3729-3731.
[22] A. Corma, V. R. Ruiz, L.-P. Leyva-Pérez, M. J. Sabater, Adv. Synth.
Catal. 2010, 352, 1701-1710.
Experimental Section
[23] a) M. R. Kuram, M. Bhanuchandra, A. K. Sahoo, J. Org. Chem. 2010,
75, 2247-2258; b) Y. Oonishi, A. Gómez-Suárez, A. R. Martin, S. P. Nolan,
Angew. Chem. Int. Ed. 2013, 52, 9767-9771; c) R. M. P. Veenboer, S. Dupuy,
S. P. Nolan, ACS Catal. 2015, 5, 1330-1334.
General Procedure: Gold Catalytic Preparation of Vinyl Ethers
[24] A. Zhdanko, M. E. Maier, Chem. Eur. J. 2014, 20, 1918-1930.
[25] Y. Xi, B. Dong, X. Shi, Beilstein J. Org. Chem. 2013, 9, 2537-2543.
[26] A. Fürstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449.
[27] F. Effenberger, Angew. Chem. Int. Ed. 1969, 8, 295-312.
[28] CCDC 1948444 (3j), 1948445 (3n), 1948446 (5), 1960225 (7c) and
1948447 (8) contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge
[29] S. M. Cope, D. Tailor, R. W. Nagorski, J. Org. Chem. 2011, 76, 380-
390.
In a 4.5 ml vial taken from a drying oven, 1 eq. of the diyne was dissolved
the respective, preferably dry, ketone (cdiyne = 150 µmol/ml) under air.
2.0 mol% IPr*Au(MeCN)SbF6 was added and the vial sealed with a Teflon
cap. The reaction mixture was stirred at rt until the reaction was finished,
as confirmed by TLC. The reaction time usually ranged between 3 and 6h.
Overnight stirring lead to diminished yields or complete decomposition,
depending on the compound. The solvent was removed in vacuo and the
raw product was dissolved in DCM, Celite was added and the solvent
removed again in vacuo. The raw product was purified using column
chromatography with silica gel, deactivated by NEt3. In some cases,
additional recrystallisation from pentane was necessary.
[30] M. Pernpointner, A. S. K. Hashmi, J. Chem. Theory Computation 2009,
5, 2717-2725.
[31] The solvent controlled regioselectivity shown in scheme 2 was
thermodynamically evaluated regarding the vinyl cation intermediate IIb and
the competing aryl cation intermediate IIb’ in benzene and acetone each. The
5-endo-dig-cyclisation via a vinyl cation intermediate is favoured by 0.81
kcal/mol in acetone in comparison to the not observed 6-endo-dig-cyclisation
via an aryl cation intermediate. In benzene the 6-endo-dig-cyclisation via an
aryl cation intermediate is favoured by 0.23 kcal/mol in comparison to the not
observed 5-endo-dig-cyclisation via a vinyl cation intermediate. These values
coincide with the observed selectivity, but the differences in energy are too low
to make for conclusive data. Please see SI for full data.
[32] a) E. D. Bergmann, Chem. Rev. 1968, 68, 41-84; b) P. Preethalayam,
S. K. Krishnan, S. Thulasi, S. S. Chand, J. Joseph, V. Nair, F. Jaroschik, K. V.
Radhakrishnan, Chem. Rev. 2017, 117, 3930-3989.
[33] T. T. Talele, J. Med. Chem. 2016, 59, 8712-8756.
[34] S. Purser, R. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev.
2008, 37, 320-330.
Acknowledgements
D. M. Lustosa is grateful for a Science without Borders fellowship
of the Brazilian Council for Scientific and Technological
Development (CNPQ).
[35] F. Wang, T. Luo, J.vHu, Y. Wang, H. S. Krishnan, P. Jog, S. Ganesh,
G. K. S. Prakash, G. A. Olah, Angew. Chem. Int. Ed. 2011, 50, 7153-7157.
[36] V. N. Volchkov, A. V. Zabolotskikh, A. V. Ignatenko, O. M. Nefedov,
Bull. Acad. Sci. USSR, Div. Chem. Sci. 1990, 39, 1458-1461.
[37] a) R. F. C. Brown, G. E. Gream, D. E. Peters, R. K. Solly, Aust. J.
Chem. 1968, 21, 2223-2236; b) E. D. Bergmann, Chem. Rev. 1968, 68, 41-84;
c) A. D. Finke, S. Haberland, W. B. Schweizer, P. Chen, F. Diederich, Angew.
Chem. Int. Ed. 2013, 52, 9827-9830.
Keywords: aryl cations • fulvene ethers • gold catalysis • vinyl
cations • vinyl ethers
[38] a) Nature 1946, 157, 580-580; b) F. Carta, A. Scozzafava, C. T.
Supuran, Expert Opinion on Therapeutic Patents 2012, 22, 747-758; c) İ.
Gulçin, P. Taslimi, Expert Opinion on Therapeutic Patents 2018, 28, 541-549;
d) Y. Farah, M. Oussama, H. Jehad, In-vitro In-vivo In-silico Journal 2018, 1,
1-15.
[39] M. Arnswald, W. P. Neumann, J. Org. Chem. 1993, 58, 7022-7028.
[40] a) R. Graf, Justus Liebigs Ann. Chem. 1963, 661, 111-157; b) P.
Goebel, K. Clauss, Justus Liebigs Ann. Chem. 1969, 722, 122-131; c) E. J.
Moriconi, W. C. Meyer, J. Org. Chem. 1971, 36, 2841-2849; d) N. S. Isaacs,
Chem. Soc. Rev. 1976, 5, 181-202.
[1]
P. H.-Y: Cheong, P. Morganelli, M. R. Luzung, K. N. Houk, D. F. Toste,
J. Am. Chem. Soc. 2008, 130, 4517-4526.
[2]
8159.
[3]
[4]
A. Gómez‐Suárez, S. P. Nolan, Angew. Chem. Int. Ed. 2012, 51, 8156-
I. Braun, A. M. Asiri, A. S. K. Hashmi, ACS Catal. 2013, 3, 1902-1907.
L. Ye, Y. Wang, D. H. Aue, L. Zhang, J. Am. Chem. Soc. 2012, 134, 31-
34.
[5]
A. S. K. Hashmi, I. Braun, M. Rudolph, F. Rominger, Organometallics
2012, 31, 644-661.
[6]
[7]
A. M. Asiri, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 4471-4503.
A. S. K. Hashmi, M. Wieteck, I. Braun, P. Nösel, L. Jongbloed, M.
Rudolph, F. Rominger, Adv. Synth. Catal. 2012, 354, 555-562.
[8] L. Nunes dos Santos Comprido, J. E. M. N. Klein, G. Knizia, J. Kästner,
A. S. K. Hashmi, Chem. Eur. J. 2016, 22, 2892-2895.
[9] Y. Wang, A. Yepremyan, S. Ghorai, R. Todd, D. H. Aue, L. Zhang,
Angew. Chem. Int. Ed. 2013, 52, 7795-7799; Angew. Chem. 2013, 125, 7949-
7953.
[10] M. M. Hansmann, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew.
Chem. Int. Ed. 2013, 52, 2593-2598.
[11] K. Graf, P. D. Hindenberg, Y. Tokimizu, S. Naoe, M. Rudolph, F.
Rominger, H. Ohno, A. S. K. Hashmi, ChemCatChem 2014, 6, 199-204.
This article is protected by copyright. All rights reserved.