1346
V. K. Gumaste et al. / Tetrahedron Letters 43 (2002) 1345–1346
Table 1. Preparation of acyl azides from carboxylic acids and sodium azide using triphosgene
Entry no.
Substrate
Producta
Yieldb (%)
Mp (°C)c
1
2
3
4
5
6
7
8
Benzoic acid
p-Toluic acid
o-Toluic acid
Benzoyl azide
p-Toluoyl azide
o-Toluoyl azide
p-Nitrobenzoyl azide
o-Chlorobenzoyl azide
Phenoxyacetyl azide
Phenylacetyl azide
Cinnamoyl azide
3,5-Dinitrobenzoyl azide
Nonanoyl azide
81
83
79
55
59
65
85
72
50
96
94
95
Oil
88–90
90–92
p-Nitrobenzoic acid
o-Chlorobenzoic acid
Phenoxyacetic acid
Phenylacetic acid
Cinnamic acid
3,5-Dinitrobenzoic acid
Nonanoic acid
Octanoic acid
68–69 (65–66)9
62–64
Oil
86–88
82–84
9
100–102 (104–105)9
10
11
12
Oil
Oil
Oil
Octanoyl azide
Hexanoyl azide
Hexanoic acid
a All products were fully characterized by spectroscopic data (IR; 1H NMR; MS) and elemental analyses.
b Isolated yield.
c Figures in parentheses show lit. mp.
acetone (20 ml) was added triethylamine (1.01 g, 10
mmol) at 0°C. The reaction mixture was stirred at this
temperature for 15 min and a solution of triphosgene
(0.74 g, 2.5 mmol) in acetone (10 ml) was added
dropwise at 0°C over about 30 min. The reaction
mixture was slowly allowed to warm up to room tem-
perature and stirred for 24 h. The reaction mixture was
filtered to remove insoluble salts and the filtrate was
diluted with an equal volume of petroleum ether. This
solution was passed through a short silica-gel column
and the solvent was removed under reduced pressure at
room temperature to give pure benzoyl azide (0.595 g,
81%).
New York, 1971; pp. 397–405; (b) Lwowski, W. In Azides
Nitrenes; Scriven, E. F. V., Ed.; Academic: Orlando, FL,
1984; pp. 205–246; (c) Moore, H. W.; Goldish, D. M. In
Chem. Halides Pseudo-Halides Azides; Patai, S.; Rappo-
port, Z., Eds.; Wiley: Chichester, UK, 1983; Vol. 1, pp.
321–368.
4. Laszlo, P.; Polla, E. Tetrahedron Lett. 1984, 25, 3701–
3704.
5. (a) Lee, J. G.; Kwak, K. H. Tetrahedron Lett. 1992, 33,
3165–3166; (b) Reddy, P. S.; Yadagiri, P.; Lumin, S.;
Falck, J. R. Synth. Commun. 1988, 18, 545–551.
6. Elmorsy, S. S. Tetrahedron Lett. 1995, 36, 1341–1342.
7. (a) Kobyashi, S.; Kamiyama, K.; Iimori, T.; Ohno, M.
Tetrahedron Lett. 1984, 25, 2557–2560; (b) Canone, P.;
Akssira, M.; Dahouh, A.; Kasmi, H.; Boumzebrra, M.
Heterocycles 1993, 36, 1305–1314.
8. Shao, H.; Colucci, M.; Tong, S.; Zhang, H.; Castelhano,
A. L. Tetrahedron Lett. 1998, 39, 7235–7238.
9. Lago, J. M.; Arrieta, A.; Palomo, C. Synth. Commun.
1983, 13, 289–296.
In summary, we have demonstrated a general method
for the preparation of acyl azides from acids using
triphosgene as an activator.
References
10. Arrieta, A.; Aizpurua, J. M.; Palomo, C. Tetrahedron
Lett. 1984, 25, 3365–3368.
11. Froeyen, P. Phosphorous, Sulfur Silicon Relat. Elem.
1994, 89, 57–61.
1. Cotarca, L.; Delogu, P.; Nardelli, A.; Sunjic, V. Synthesis
1996, 553–576.
2. Krishnaswamy, D.; Bhawal, B. M.; Deshmukh, A. R. A.
12. Kotz, R.; Roestemadji, J.; Mobashery, S. J. Org. Chem.
S. Tetrahedron Lett. 2000, 41, 417–419.
3. (a) Patai, S. The Chemistry of Azido Group; Interscience:
1994, 59, 2913–2914.