J . Org. Chem. 2000, 65, 1629-1635
1629
New In sigh ts in to th e Ch em istr y of Lith iu m Ca r ba m oyls:
Ch a r a cter iza tion of a n Ad d u ct (R2NC(O)CLi(OLi)NR2)
Norma S. Nudelman* and Guadalupe E. Garc´ıa Lin˜ares
Departamento de Quı´mica Orga´nica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos
Aires, Pab. II, P. 3, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Received May 24, 1999
Studies of the reaction of lithium dicyclohexylamide with N,N-dibutylformamide, 1-formylpiperidine,
and 4-formylmorpholine indicate that the equilibria resulting from these compounds are shifted
toward the formation of an adduct, which quickly collapses to dicyclohexylamine and the lithiated
carbamoyl anion derived from the initial disubstituted formamide. Further reactions of the lithium
carbamoyl lead to a new adduct where a lithiated carbon is bounded to N, O, and a carbonyl
functionality. The 13C NMR analysis of the reaction mixtures showed the presence of similar
intermediates in all cases: adducts of this type have not been reported before. These dilithiated
intermediates were trapped with methyl iodide giving the corresponding doubly methylated
derivatives. Isolation of substituted glyoxylamides and quantitative determination of the products
yields constitute further evidence of the whole reaction scheme proposed.
In tr od u ction
characterizing their structures both in solution13 and in
the solid state.14-17 Many complexes are difficult to obtain
as single crystals; hence, much of the present knowledge
comes from studies using NMR spectroscopy.18-21
The actual structure of lithiated intermediates gener-
ated during organic synthesis and how these structures
help to explain the course of the reactions are the subject
of active research at present.1-3 Acyl(formyl)lithium
species are key intermediates to afford nucleophilic
acylations, and the reaction of organolithium reagents
with carbon monoxide provides a fast way for the
preparation of a wide diversity of molecules.4,5 Despite
their intensive use in organic synthesis, it is only very
recently that an incisive insight into the knowledge of
the real nature of intermediate species in solution is
being developed.1,3,6 The knowledge of such species is not
only relevant to the mechanisms of the reactions involv-
ing it, but it could be constructively used to change the
course of those reactions into desired synthetic goals.2,7,8
On the other hand, the growing use of lithium bases
as reagents for organic and organometallic transforma-
tions has led to the realization of the role that aggrega-
tion plays in their reactivity and selectivity.9-12 Conse-
quently, much effort is currently being expended in
We have recently synthesized the first adduct, the
lithium dimorpholinemethoxide,3 affording evidence for
the first intermediate proposed in the carbonylation of
lithium amides, the carbamoyl species R1R2NC(O)Li. This
reaction is very useful for the synthesis of substituted
formamides22 and ureas;8 the procedure could be also
applied for the synthesis of substituted formamides that
were recently found to have an antimicrobial activity.23
These carbonylations have been fully investigated includ-
(10) Henderson, K. W.; Dorigo, A. E.; Williard, P. G.; Bernstein, P.
R. Angew. Chem., Int. Ed. Engl. 1996, 35, 1322.
(11) Ball, S. C.; Cragg-Hine, I.; Davidson, M. G.; Davies, R. P.;
Edwards, A. J .; Lopez-Solera, I.; Raithby, P. R.; Snaith, R. Angew.
Chem., Int. Ed. Engl. 1995, 34, 1002.
(12) Reviews on lithium structural chemistry: (a) Weiss, E. Angew.
Chem., Int. Ed. Engl. 1993, 32, 1501. (b) Mulvey, R. Chem. Soc. Rev.
1991, 20, 167.
(13) (a) Waldmu¨ller, D.; Kotsatos, B. J .; Nichols, M. A.; Williard, P.
G. J . Am. Chem. Soc. 1997, 119, 5479. (b) Abbotto, A.; Streitwieser,
A.; Schleyer, P. v. R. J . Am. Chem. Soc. 1997, 119, 11255. (c) Bauer,
W. J . Am. Chem. Soc. 1996, 118, 5450.
* To whom correspondence should be addressed. Fax: (5411) 576-
3346. E-mail: nudelman@qo.fcen.uba.ar.
(1) Ball, S. C.; Cragg-Hine, I.; Davidson, M. G.; Davies, R. P.;
Raithby, P. R.; Snaith, R. J . Chem. Soc., Chem. Commun. 1996, 1581.
(2) (a) Mu¨ller, A.; Marsch, M.; Harms, K.; Lohrenz, J . C. W.; Boche,
G. Angew. Chem., Int. Ed. Engl. 1996, 35, 1518. (b) Stiasny, H. C.;
Bo¨hm, V. P. W.; Hoffman, R. W. Chem. Ver. 1997, 130, 341.
(3) Nudelman, N. S.; Schulz, H.; Garc´ıa Lin˜ares, G.; Bonatti, A.;
Boche, G. Organometallics 1998, 17, 146.
(4) Seyferth, D.; Hui, R. C.; Wang, W. L. J . Org. Chem. 1993, 58,
5843 and references cited therein.
(5) Nudelman, N. S. Carbonylation of Main-Group Organometal
Compounds. In The Chemistry of Double Bonded Functional Groups;
Patai, S., Ed.; Wiley: Chichester, 1989.
(6) Davidson, M. G.; Davies, R. P.; Raithby, P. R.; Snaith, R. J .
Chem. Soc., Chem. Commun. 1996, 1695.
(7) Lucht, B. L.; Collum, D. B. J . Am. Chem. Soc. 1996, 118, 2217.
(8) (a) Nudelman, N. S.; Lewkowicz, E. S.; Perez, D. G. Synthesis
1990, 917. (b) Perez, D. G.; Nudelman, N. S. J . Org. Chem. 1988, 53,
408.
(9) (a) Abu-Hasanayn, F.; Streitwieser, A. J . Org. Chem. 1998, 63,
2954. (b) Leung, S. S-W.; Streitwieser, A., J . Am. Chem. Soc. 1998,
120, 10557. (c) Thompson, A.; Corley, E. G.; Huntington, M. F.;
Grabowski, E. J . J .; Remenar, J . F.; Collum, D. B. J . Am. Chem. Soc.
1998, 120, 2028.
(14) Williard, P. G.; Sun, C. J . Am. Chem. Soc. 1997, 119, 11693.
(15) Boche, G.; Langlotz, I.; Marsch, M.; Harms, K.; Nudelman, N.
S. Angew. Chem., Int. Ed. Engl. 1992, 104, 774.
(16) van Vliet, G. L. J .; de Kanter, F. J . J .; Schakel, M.; Klumpp, G.
W.; Spek, A. L.; Lutz, M. Chem. Eur. J . 1999, 5, 1091.
(17) Clegg, W.; Henderson, K. W.; Horsburgh, L.; Mackenzie, F. M.;
Mulvey, R. E. Chem.sEur. J . 1998, 4, 53.
(18) (a) Hilmersson, G.; Arvidsson, P. I.; Davidsson, O¨ .; Hakansson,
M. J . Am. Chem. Soc. 1998, 120, 8143. (b) Bauer, W. Magn. Reson.
Chem. 1996, 34, 532.
(19) (a) Hu¨ls, D.; Gu¨nther, H.; van Koten, G.; Wijkens, P.; J astr-
zebski, J . T. B. H. Angew. Chem., Int. Ed. Engl. 1997, 36, 2629. (b)
Khanjin, N. A.; Menger, F. M. J . Org. Chem. 1997, 62, 8923.
(20) (a) Aubrecht, K. B.; Collum, D. B. J . Org. Chem. 1996, 61, 8674.
(b) Remenar, J . F.; Lucht, B. L.; Collum, D. B. J . Am. Chem. Soc. 1997,
119, 5567.
(21) Corruble, A.; Valnot, J .-Y.; Maddaluno, J .; Prigent, Y.; Davoust,
D.; Duhamel, P. J . Am. Chem. Soc. 1997, 119, 10042.
(22) (a) Nudelman, N. S; Lewkowicz, E. S.; Furlong, J . P. J . J . Org.
Chem. 1993, 58, 1847. (b) Nudelman, N. S. Pure Appl. Chem. 1998,
70, 1939.
(23) Dahbi, T. P.; Shah, V. H.; Parikh, A. R. Indian J . Heterocycl.
Chem. 1992, 2(2), 137.
10.1021/jo9908445 CCC: $19.00 © 2000 American Chemical Society
Published on Web 03/01/2000