Chemistry Letters 2002
709
Yoshifuji, Chem. Lett., 2000, 1390.
4
a) B. Breit, J. Mol. Catal. A: Chem., 143, 143 (1999). b) R. Shintani,
M. M.-C. Lo, and G. C. Fu, Org. Lett., 2, 3695 (2000). c) K. Toyota, K.
Masaki, T. Abe, and M. Yoshifuji, Chem. Lett., 1995, 221. d) S. Ikeda,
F. Ohhata, M. Miyoshi, R. Tanaka, T. Minami, F. Ozawa, and M.
Yoshifuji, Angew. Chem. Int. Ed., 39, 4512(2000). e) F. Ozawa, S.
Yamamoto, S. Kawagishi, M. Hiraoka, S. Ikeda, T. Minami, S. Ito, and
M. Yoshifuji, Chem. Lett., 2001, 972. f) T. Minami, H. Okamoto, S.
Ikeda, R. Tanaka, F. Ozawa, and M. Yoshifuji, Angew. Chem. Int. Ed.,
40, 4501 (2001). g) L. Weber, Angew. Chem. Int. Ed., 41, 563 (2002).
N. Yamada, K. Abe, K. Toyota, and M. Yoshifuji, Org. Lett., 4, 569
(2002).
5
6
Figure 2. Molecular structure of 8.
[1.660(7) A] is comparable to the corresponding value of 9
a) P. Le Floch, D. Carmichael, and F. Mathey, Organometallics, 10,
2432 (1991). b) H. Teunissen and F. Bickelhaupt, Organometallics,
15, 794 (1996).
ꢀ
12
ꢀ
[1.635(4) A], and the P–W bond length [2.539(2) A] is similar to
ꢀ
7
8
a) S. Ito, K. Toyota, and M. Yoshifuji, Chem. Commun., 1997, 1637. b)
G. Markl and W. Bauer, Angew. Chem., Int. Ed. Engl., 28, 1695
that of the pentacarbonyltungsten(0) complex of 3,3-diphenyl-1-
13
¨
(1989).
ꢀ
(2,4,6-tri-t-butylphenyl)-1-phosphaallene [2.531(2) A].
The
ꢀ
a) To a solution of 6 (0.13 mmol) in THF (6 mL) was added
butyllithium (0.15 mmol), and in 5 min copper(II) chloride
(0.25 mmol) was added at À78 ꢁC. The reaction mixture was stirred
at À78 ꢁC for 1 h, and oxygen was bubbled for 5 min (ca. 32mmol).
After treatment with aqueous sodium sulfite and warming up to room
temperature, the mixture was treated with ammonia (10% NH3 in
saturated aqueous NH4Cl) and extracted with ether. The organic layer
was concentrated in vacuo, and the residue was purified by silica-gel
column chromatography (hexane/toluene 5 : 1) to afford 37 mg of 7
(97% yield) as yellow solids. b) EE-7: Yellow crystals, mp 233–
234 ꢁC; 1H NMR (200 MHz, CDCl3) ꢂ ¼ 1:35 (18H, s, p-tBu), 1.50
(36H, s, o-tBu), 1.55 (m, 6H, Me), 7.41 (4H, brs, arom); 13C{1Hg NMR
(50 MHz, CDCl3) ꢂ ¼ 183:9 (dd, 1JPC ¼ 13 Hz, 2JPC ¼ 3 Hz, P=C);
31P{1Hg NMR (81 MHz, CDCl3) ꢂ ¼ 232; HRMScalcd for C40H64P2,
606.4483; found, 606.4488. c) ZZ-7; ꢂP ¼ 237; EZ-7; ꢂP ¼ 240, 2 88
ꢀ
distances are 1.478(9) and 1.54(1) A,
C1–C2and C–2C2
respectively.
To verify the [1,2]-hydrogen shift of 5w, we examined the
reaction of 6w as follows: 6w was allowed to react with 1 eq of
butyllithium and quenched with methanol-d4 at À78 ꢁC to give
(Z)-3-deuterio-1-phosphapropene complex Z-10 in an 80%-D
ratio, (E)-1-phosphapropene complex E-11, and 1-phosphaallene
complex 12 in a 6 : 3 : 1 ratio almost quantitatively.10 Formation
of Z-10 indicates the [1,2]-rearrangement leading to a 3-phospha-
2-propenyllithium intermediate (50w). Compound E-11 might
have been generated by proton abstraction of 5w from 6w,
indicating slow rate of the halogen-metal exchange to generate
5w, and 12 might havebeen formed by anelimination of hydrogen
bromide from 6w. It indicates a facile [1,2]-hydrogen shift of 5w
proceeds to afford the 3-phospha-2-propenyllithium derivative
(Z-50w).
3
(ABq, Jpp ¼ 154 Hz). d) Crystal data for EE-7; C40H64P2 M ¼
ꢁ
606:89, triclinic, P1 (no. 2), a ¼ 18:524ð3Þ, b ¼ 18:564ð2Þ, c ¼
6:237ð6Þ A, ꢃ ¼ 98:23ð2Þ, ꢄ ¼ 93:72ð2Þ, ꢅ ¼ 64:40ð1Þ ꢁ, V ¼
ꢀ
ꢀ 3
1914ð1Þ A , Z ¼ 2, ꢆ ¼ 1:053 g cmÀ3, ꢇðMo KꢃÞ ¼ 0:138 mmÀ1
,
T ¼ 150 K, 5428 reflections measured (2ꢈmax ¼ 50:0 ꢁ), 5426
observed [I > 1:0ꢉðIÞ], R1 ¼ 0:047 [I > 2:0ꢉðIÞ]. Rw ¼ 0:108 (all
data). CCDC-181946.
9
R. Appel, J. Hunerbein, and N. Siabalis, Angew. Chem., Int. Ed. Engl.,
¨
26, 779 (1987).
10 31P{1Hg NMR (162MHz, CDCl 3) 6w: ꢂ ¼ 210 (1JPW ¼ 270 Hz); Z-
10: ꢂ ¼ 208 (1JPW ¼ 262 Hz); E-11: ꢂ ¼ 199 (1JPW ¼ 259 Hz); 12:
ꢂ ¼ 42 (1JPW ¼ 259 Hz).
As for 5w, coordination of the pentacarbonyltungsten(0)
group might increase the acidity of the methyl group, which
resembles in the property of (ꢁ6-arene)transition metal complex-
es.14 Moreover, we assume that steric congestion around the
‘‘solvated’’ lithium atom might facilitate the [1,2]-rearrange-
ment. Although the detailed reaction mechanism for the facile
[1,2]-rearrangement of 5w has not been clarified, it is interesting
to note that the reactivity of 5 changes upon coordination.
11 a) To a solution of 6w (0.14 mmol) in THF (10 mL) at À78 ꢁC was
added butyllithium (0.15 mmol) and in 10 min copper(II) chloride
(0.29 mmol). The reaction mixture was stirred for 1 h and warmed to
room temperature. The reaction mixture was treated with ammonia as
described in the case of 7, and extracted with ether. The organic layer
was concentrated in vacuo, and the residue was purified by silica gel
column chromatography (hexane/toluene 5 : 1) from recrystallization
in hexane to afford 26 mg of 8 (30% yield) together with E=Z-11 and
their decomplexed products. 8: mp 228–231 ꢁC; 1H NMR (400 MHz,
CDCl3) ꢂ ¼ 1:03 (4H, m, CH2), 1.33 (18H, s, p-tBu), 1.58 (36H, s, o-
tBu), 6.80 (2H, dt, 2JPH ¼ 20 Hz, 3JHH ¼ 7 Hz, P=CH), 7.42(4H, d,
4JPH ¼ 3 Hz, arom); 31P NMR (162MHz, CDCl 3) ꢂ ¼ 202 (dt,
This work was supported in part by a Grant-in-Aid for
Scientific Research (No. 13304049) from the Ministry of
Education, Culture, Sports, Science and Technology, Japan.
3
1
2JPH ¼ 20 Hz, JPH ¼ 20 Hz; JPW ¼ 259 Hz); IR (KBr) ꢊ ¼ 2073,
1990, 1932cm À1; FAB-MS m=z 1254 (Mþ). Anal. Calcd for
C50H64O10P2W2: C, 47.84; H, 5.14. Found: C, 48.11; H, 5.14. b)
Crystal data for 8ꢂ1=2C7H8: C53:5H68O10P2W2, M ¼ 1300:73,
monoclinic, P21/c (no. 14), a ¼ 13:320ð8Þ, b ¼ 15:838ð2Þ, c ¼
References and Notes
1
This paper is dedicated to Prof. Dr. Dieter Seebach at Eidgenossische
¨
ꢀ
ꢀ 3
Technische Hochschule Zurich on the occasion of his 65th birthday.
2a) M. Yoshifuji,
¨
J. Chem. Soc. Dalton Trans., 1999, 3343. b) M.
14:112ð3Þ A, ꢄ ¼ 102:65ð2Þ, V ¼ 2904ð1Þ A , Z ¼ 2, ꢆ ¼
1:540 g cmÀ3, ꢇðMo KꢃÞ ¼ 4:070 mmÀ1, T ¼ 150 K, 4936 reflec-
tions measured (2ꢈmax ¼ 50:0 ꢁ), 4714 observed [I > 2:0ꢉðIÞ],
R1 ¼ 0:050 [I > 2:0ꢉðIÞ]. Rw ¼ 0:064 (all data). CCDC-181947.
12R. Appel, V. Winkhaus, and F. Knoch, Chem. Ber., 120, 125 (1987).
13 M. Yoshifuji, K. Toyota, T. Sato, N. Inamoto, and K. Hirotsu,
Heteroat. Chem., 1, 339 (1990).
Yoshifuji, J. Organomet. Chem., 611, 210 (2000). c) M. Regitz and O.
J. Scherer, ‘‘Multiple Bonds and Low Coordination in Phosphorus
Chemistry,’’ Georg Thieme Verlag, Stuttgart (1990). d) K. B. Dillon,
F. Mathey, and J. F. Nixon, ‘‘Phosphorus: The Carbon Copy,’’ Wiley,
Chichester (1998).
3
a) S. Ito, K. Toyota, and M. Yoshifuji, Chem. Lett., 1995, 747. b) S. Ito,
K. Toyota, and M. Yoshifuji, J. Organomet. Chem., 553, 135 (1998).
c) S. Ito and M. Yoshifuji, Chem. Lett., 1998, 651. d) S. Ito and M.
14 J. P. Collmann, L. S. Hegedus, J. R. Norton, and R. G. Finke,
‘‘Principles and Applications of Organotransition Metal Chemistry,’’
University Science Books, New York (1987).