2100
C. Schneider et al.
LETTER
through flash chromatography with diethyl ether/pentane
Acknowledgment
(1:2) as eluent yielded 145 mg (65%) of the desired aldol
product 9 as a colourless oil (84:16 mixture of stereo-
isomers) along with 34 mg (27%) of unreacted aldehyde 8
and 44 mg (30%) of methyl ketone 7 both of which were
used again in the aldol reaction. [ ]D20 +19.7 (c 0.58,
CHCl3); IR(film): = 3471 (OH), 2992, 2949, 2857 (CH),
1741 (C=O), 1712 (C=O) cm–1; 1H NMR (300 MHz,
CDCl3): = 0.05 (s, 6 H, SiMe2), 0.90 (s, 9 H, t-Bu), 1.07–
1.33 (m, 2 H), 1.36, 1.40, 1.41 [3 s, 12 H, 2 C(CH3)2],
1.50–1.97 (m, 10 H), 2.37 (dd, J = 15.5, 6.0 Hz, 1 H, 2-H),
2.43–2.65 (m, 4 H) 2.73 (dd, J = 15.5, 7.0 Hz, 1 H, 2-H),
3.68 (s, 3 H, OMe), 3.65–4.29 (m, 9 H), 4.45, 4.48, 4.55,
4.56 (4 d, J = 11.5 Hz, 4 H, 2 OBn), 7.25–7.36 (m, 10 H,
Financial support of this work by the Deutsche Forschungsgemein-
schaft (Schn 441/2) and the Fonds der Chemischen Industrie is gra-
tefully acknowledged. We would like to thank Prof. Nakata for
sharing information prior to publication and Degussa AG for the ge-
nerous supply of amino acids.
References
(1) Kobinata, K.; Koshino, H.; Kudo, T.; Isono, K.; Osada, H.
J. Antibiot. 1993, 46, 1616.
(2) Koshino, H.; Kobinata, K.; Isono, K.; Osada, H. J. Antibiot.
1993, 46, 1619.
(3) Suenaga, T.; Nakamura, H.; Koshino, H.; Kobinata, K.;
Osada, H.; Nakata, T. Tennen Yuki Kagobutsu Toronkai
Koen Yoshishu 1997, 39, 607.
(4) Omura, S. Macrolide Antibiotics: Chemistry, Biology,
Practice; Academic Press: New York, 1984.
(5) Reviews: (a) Oishi, T.; Nakata, T. Synthesis 1990, 635.
(b) Rychnovsky, S. D. Chem. Rev. 1995, 95, 2021.
(c) Schneider, C. Angew. Chem. Int. Ed. 1998, 37, 1375;
Angew. Chem. 1998, 110, 1445. (d) For selected examples
see: Poss, C. S.; Rychnovsky, S. D.; Schreiber, S. L. J. Am.
Chem. Soc. 1993, 115, 3360. (e) Rychnovsky, S. D.; Hoye,
R. C. J. Am. Chem. Soc. 1994, 116, 1753. (f) Mori, Y.;
Asai, M.; Okumura, A.; Furukawa, H. Tetrahedron 1995,
51, 5299. (g) Weigand, S.; Brückner, R. Liebigs Ann. Recl.
1997, 1657. (h) Rychnovsky, S. D.; Khire, U. R.; Yang, G.
J. Am. Chem. Soc. 1997, 119, 2058. (i) Smith, A. B.; Boldi,
A. M. J. Am. Chem. Soc. 1997, 119, 6925. (j) Krüger, J.;
Carreira, E. M. Tetrahedron Lett. 1998, 39, 7013.
(k) Dreher, S. D.; Leighton, J. L. J. Am. Chem. Soc. 2001,
123, 341. (l) Paterson, I.; Collet, L. A. Tetrahedron Lett.
2001, 42, 1187.
(6) Review: Schneider, C. Synlett 2001, 1079; and references
cited therein.
(7) (a) Schneider, C.; Rehfeuter, M. Tetrahedron Lett. 1998, 39,
9. (b) Schneider, C.; Rehfeuter, M. Chem.–Eur. J. 1999, 5,
2850.
(8) Paterson, I.; Gibson, K. R.; Oballa, R. M. Tetrahedron Lett.
1996, 37, 8585.
(9) Evans, D. A.; Coleman, P. J.; Cote, B. J. Org. Chem. 1997,
62, 788.
(10) Experimental Procedure: An amount of 149 mg (0.39
mmol) of methyl ketone 7 was dissolved in 4 mL diethyl
ether and cooled to –78 °C. For enolization 0.59 mL (0.59
mmol) of a 1 M solution of dibutylboron triflate in
dichloromethane were added and subsequently 92 L (0.66
mmol) triethyl-amine and the resulting solution was stirred
for 30 min at –78 °C and for 30 min at 0 °C. Then the
solution was cooled to –100 °C and 122 mg (0.27 mmmol)
of aldehyde 8, dissolved in 1 mL diethyl ether, were added
with a syringe. Stirring was continued for 3 h at –100 °C and
3 h at –78 °C after which the reaction was quenched with pH
7 buffer. After separation of the phases the aq phase was
repeatedly extracted with diethyl ether, the combined
organic extracts were dried over MgSO4, filtered and
evaporated in vacuo. Purification of the crude mixture
2
Ph); 13C NMR (75 MHz, CDCl3): = –5.35, 18.30,
19.81, 19.84, 25.94, 30.11, 30.26, 36.86, 37.41, 39.45,
40.20, 40.47, 41.18, 42.39, 49.29, 50.81, 51.60, 58.77,
65.28, 65.48, 65.76, 65.87, 66.49, 70.36, 72.44, 71.93,
74.63, 98.36, 98.81, 127.70, 127.80, 128.00, 128.10, 128.40,
138.10, 138.30, 171.30, 209.40; MS (200 eV, DCI/NH3):
+
m/z (%) = 847(100) [M + NH4 ]; calcd for C46H72O11Si
(829.15): C, 66.63; H, 8.75. Found: C, 66.82; H, 8.50.
(11) Evans, D. A.; Duffy, J. L.; Dart, M. J. Tetrahedron Lett.
1994, 35, 8537.
(12) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem.
Soc. 1988, 110, 3560.
(13) For an account on the stereochemical analysis of 1,3-diol
acetonides by 13C NMR see: Rychnovsky, S. D.; Rogers, B.
N.; Richardson, T. I. Acc. Chem. Res. 1998, 31, 9.
(14) (a) Direct acetonide formation on diol 10 furnished a
triacetonide with two syn- and one anti-stereochemical
relationships. When the reduction of aldol product 9 was
performed in a syn-selective manner with NaBH4 and
Et2BOMe according to Narasaka14b with subsequent
debenzylation and tetraacetonide formation the major
stereoisomer contained two syn- and two anti-stereo-
chemical relationships in agreement with the assigned
configurations. (b) Narasaka, K.; Pai, F.-C. Tetrahedron
1984, 40, 2233.
(15) (a) Wieland, H. Chem. Ber. 1912, 45, 484. (b) Barbier, P.;
Locquin, R. C. R. Chim. 1913, 156, 1443.
(16) Burgess, E. M.; Penton, H. R.; Taylor, E. A. J. Org. Chem.;
1973, 38, 26.
(17) Spectroscopic Data of 2: [ ]D20 0 (c 0.2, CHCl3); IR(film):
= 2990, 2938, 2857 (CH), 1745 (C=O) cm–1; 1H NMR (500
MHz, C6D6): = 0.06, 0.08 (2 s, 6 H, SiMe2), 0.98 (s, 9 H,
t-Bu), 1.10–1.60 (m, 14 H), 1.32, 1.37, 1.47, 1.49, 1.50, 1.54,
1.55 [7 s, 24 H, 8 C(CH3)2], 1.67 (s, 3 H, OAc), 1.73–1.82
(m, 1 H), 2.06 (quint, J = 7.0 Hz, 1 H), 3.68 (dt, J = 10.0, 5.0
Hz, 1 H, CH2OTBS), 3.82 (ddd, J = 10.0, 8.5, 5.0 Hz, 1 H,
CH2OTBS), 3.83–3.89 (m, 1 H), 3.96–4.34 (m, 9 H); 13
C
NMR (150 MHz, C6D6): = –5.38, 18.49, 19.82, 19.92,
19.97, 20.42, 24.86, 26.13, 30.39, 30.63, 30.67, 37.60,
37.80, 39.46, 40.16, 42.80, 43.08, 43.59, 59.20, 62.55,
62.69, 64.86, 65.34, 65.60, 65.71, 65.76, 67.38, 67.70,
98.54, 98.59, 98.80, 100.50, 170.10; MS (200 eV, EI): m/z
(%) = 715(34) [M+ – CH3], 414(4), 380(5), 337(10), 256(18),
149(21), 57(100) [C4H9]; HRMS calcd for C38H70O11Si: for
[M+ – CH3] 715.4453. Found: 715.4531.
Synlett 2002, No. 12, 2098–2100 ISSN 0936-5214 © Thieme Stuttgart · New York