A R T I C L E S
A¨ıssa et al.
Scheme 7 a
Scheme 8 a
a Assembly of the RCM precursor: [a] KHMDS, TBDPSCl, THF,
77%; [b] TsOH, aq MeOH, 75%; [c] I2, PPh3, imidazole, toluene, 80%;
[d] (i) Zn/Cu couple, TMSCl, toluene, DMA; (ii) 24b, Pd2(dba)3 catalyst,
P(2-furyl)3 catalyst, 40-50% (33) + 20-30% (32b).
converted into the required iodide 32a without interference of
a neighboring group (Scheme 7).
With this compound in hand, the remaining coupling was
achieved by a palladium catalyzed acyl-Negishi reaction.28,29
Thus, exposure of 32a to a Zn/Cu couple, which was activated
in situ with TMSCl immediately prior to use, gave the
corresponding organozinc reagent. This intermediate reacted
with the enantiomerically pure acid chloride 24b in the presence
of Pd2(dba)3 catalyst and tris(2-furyl)phosphine as the ligand
to give the desired ketone 33, together with the reduced product
32b. The reaction must be carried out in toluene in the presence
of DMA as a cosolvent, since THF is cleaved under these
conditions. Attempts to perform this coupling with nucleophiles
other than the organozinc reagent and/or different catalysts and
ligand sets were unrewarding.30 Notably, this reaction constitutes
one of the most advanced examples of an acyl-Negishi coupling
reported to date31 and sets the stage for the envisaged macro-
cyclization via RCM.
Completion of the Total Synthesis of Amphidinolides T1,
T4, and T5. In line with our expectations,32 the formation of
the macrocyclic ring by RCM of diene 33 worked exquisitely
well when carried out under standard conditions in the presence
of the “second generation” ruthenium carbene complex 34 as
the precatalyst bearing an imidazol-2-ylidene ligand (Scheme
8).33 Hydrogenation of the resulting cycloalkene 35 (E:Z ) 6:1)
delivers compound 36 in high yield ready for the introduction
of the exo-methylene group of the final target.
a Macrocyclization and olefination: [a] catalyst 34, CH2Cl2, reflux, 86%;
[b] H2 (1 atm), Pd/C, EtOAc, 86%; [c] PH3PdCH2, THF, quantitative; [d]
Nysted’s reagent 38 (excess), TiCl4, THF, reflux, 64%.
proved to be too basic and led only to a â-elimination of the
aldol with concomitant opening of the macrocycle to give acid
37. The use of a modified Peterson reagent for this olefination
met with complete failure.34 Semiempirical calculations35
showed that the difficulties encountered in the attempted
olefinations are likely steric in origin. In line with the results
reported by Kobayashi et al. concerning the conformational
compression of the macrocycle in amphidinolide T1,4c the
(32) These expectations derive from our experiences gained in the following
total syntheses: (a) Fu¨rstner, A.; Kindler, N. Tetrahedron Lett. 1996, 37,
7005-7008. (b) Fu¨rstner, A.; Langemann, K. J. Am. Chem. Soc. 1997,
119, 9130-9136. (c) Fu¨rstner, A.; Mu¨ller, T. J. Org. Chem. 1998, 63, 424-
425. (d) Fu¨rstner, A.; Gastner, T.; Weintritt, H. J. Org. Chem. 1999, 64,
2361-2366. (e) Fu¨rstner, A.; Seidel, G.; Kindler, N. Tetrahedron 1999,
55, 8215-8230. (f) Fu¨rstner, A.; Mu¨ller, T. J. Am. Chem. Soc. 1999, 121,
7814-7821. (g) Fu¨rstner, A.; Grabowski, J.; Lehmann, C. W. J. Org. Chem.
1999, 64, 8275-8280. (h) Fu¨rstner, A.; Thiel, O. R.; Kindler, N.;
Bartkowska, B. J. Org. Chem. 2000, 65, 7990-7995. (i) Fu¨rstner, A.;
Radkowski, K. Chem. Commun. 2001, 671-672. (j) Fu¨rstner, A.; Stelzer,
F.; Rumbo, A.; Krause, H. Chem.sEur. J. 2002, 8, 1856-1871. (k)
Fu¨rstner, A.; Jeanjean, F.; Razon, P. Angew. Chem. 2002, 114, 2203-
2206; Angew. Chem., Int. Ed. 2002, 41, 2097-2101. (l) Fu¨rstner, A.;
Jeanjean, F.; Razon, P.; Wirtz, C.; Mynott, R. Chem.sEur. J. 2003, 9,
320-326. (m) Fu¨rstner, A.; Leitner, A. Angew. Chem. 2003, 115, 320-
323; Angew. Chem., Int. Ed. 2003, 42, 308-311.
(33) (a) Huang, J.; Stevens, E. D.; Nolan, S. P.; Petersen, J. L. J. Am. Chem.
Soc. 1999, 121, 2674-2678. (b) Scholl, M.; Trnka, T. M.; Morgan, J. P.;
Grubbs, R. H. Tetrahedron Lett. 1999, 40, 2247-2250. (c) Ackermann,
L.; Fu¨rstner, A.; Weskamp, T.; Kohl, F. J.; Herrmann, W. A. Tetrahedron
Lett. 1999, 40, 4787-4790. (d) Fu¨rstner, A.; Thiel, O. R.; Ackermann, L.;
Schanz, H.-J.; Nolan, S. P. J. Org. Chem. 2000, 65, 2204-2207.
(34) Johnson, C. R.; Tait, B. D. J. Org. Chem. 1987, 52, 281-283.
(35) Using Spartan 02, 2001, software at the PM3 level.
However, the seemingly routine transformation of 36 into
39 turned out to be quite problematic. Specifically, Ph3PdCH2
(28) (a) Negishi, E.; Liu, F. In Metal-catalyzed Cross-coupling Reactions;
Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998; pp 1-47.
(b) Sugihara, T. In Handbook of Organopalladium Chemistry for Organic
Synthesis; Negishi, E., Ed.; Wiley: New York, 2002; Vol. 1, pp 635-647.
(29) (a) Negishi, E.; Bagheri, V.; Chatterjee, S.; Luo, F.-T.; Miller, J. A.; Stoll,
A. T. Tetrahedron Lett. 1983, 24, 5181-5184. (b) Tamaru, Y.; Ochiai,
H.; Sanda, F.; Yoshida, Z. Tetrahedron Lett. 1985, 26, 5529-5532.
(30) This includes (i) the use of Pd(0) in combination with tri-o-tolylphosphine,
dppf, or tri-(p-methoxyphenyl)phosphine as the ligands; (ii) the use of CoBr2
or (PPh3)2Rh(CO)Cl as catalysts instead of Pd(0); and (iii) attempts to
transmetalate the organozinc species with CuCN‚2LiCl, CuBr‚Me2S,
PhSCuLi, MnI2, or MnCl2‚2LiCl prior to cross coupling.
(31) For another advanced example, see: (a) Fu¨rstner, A.; Weintritt, H. J. Am.
Chem. Soc. 1998, 120, 2817-2825. (b) Fu¨rstner, A. Angew. Chem., Int.
Ed. 2003, 42, 3582-3603.
9
15516 J. AM. CHEM. SOC. VOL. 125, NO. 50, 2003