N. Langlois / Tetrahedron Letters 43 (2002) 9531–9533
9533
1
very mild conditions. This methodology could be
extended to 5-hydroxymethylpyrrolidin-2-ones bearing
various other substituents in 3 and 4 positions and to
their N1-sulfonyl analogues.
1.50, CHCl3); H NMR (300 MHz, CDCl3, l=0: TMS):
7.37 (m, 5H, H-Ar), 6.60 (m, 1H, NH), 6.28 (s, 1H, H-2),
4.37 (1H), 4.31 (m, 1H, H-6), 3.86 (m, 2H), 2.85 (dd, 1H,
J
7a,7b=16.6, J7a,6=8.9 Hz, Ha-7), 2.73 (dd, 1H, J7a,7b=
16.6, J7b,6=9.8 Hz, Hb-7), 1.96 (s, 3H, COCH3); 13C
NMR (75.0 MHz, CDCl3): 174.29 (CO), 170.76 (CO),
138.23 (qC, Ar), 128.86, 128.58, 126.01 (CH, Ar), 87.09
(C-2), 71.32 (C-4), 66.41 (NCH), 50.03 (NCH), 40.15
(C-7), 22.87 (COCH3). Anal. calcd for C14H16N2O3: C,
64.60; H, 6.20; N, 10.76. Found: C, 64.61; H, 6.34; N,
10.71%.
References
1. Langlois, N.; Calvez, O. Synth. Commun. 1998, 28, 4471–
4477.
2. Calvez, O.; Chiaroni, A.; Langlois, N. Tetrahedron Lett.
11. (a) Kramer, U.; Guggisberg, A.; Hesse, M.; Schmid, H.
Angew. Chem., Int. Ed. Engl. 1977, 861–862; (b) Kramer,
U.; Schmid, H.; Guggisberg, A.; Hesse, M. Helv. Chim.
Acta 1979, 62, 811–815; (c) Wasserman, H. H.; Mat-
suyama, H.; Robinson, R. P. Tetrahedron 2002, 58, 7177–
7190.
1998, 39, 9447–9450.
3. Langlois, N.; Calvez, O. Tetrahedron Lett. 2000, 41,
8285–8288.
4. Langlois, N. Org. Lett. 2002, 185–187.
5. Fukuyama, T.; Li, L.; Laird, A. A.; Frank, R. K. J. Am.
Chem. Soc. 1987, 109, 1587–1589.
12. Ackerman, J.; Matthes, M.; Tamm, C. Helv. Chim. Acta
1990, 73, 122–132.
13. Panday, S. K.; Langlois, N. Tetrahedron Lett. 1995, 36,
8205–8208.
14. Chan, P. W. H.; Cottrell, I. F.; Moloney, M. G. Tetra-
hedron Lett. 1997, 38, 5891–5894.
6. Weber, K.; Gmeiner, P. Synlett 1998, 885–887.
7. Lehmann, T.; Michel, D.; Gla¨nzel, M.; Waibel, R.;
Gmeiner, P. Heterocycles 1999, 51, 1389–1400.
8. Preliminary communication: Langlois, N. IXth Confer-
ence, French–American Chemical Society, June 2–6,
2002, Saint-Malo, France.
15. Preparation of 10b: 5-Azidomethyl derivative 5b (53.0
mg, 0.178 mmol) in MeOH (1.0 mL) was stirred under H2
(1 atm) in the presence of 10% Pd/C (9.0 mg) for 48 h.
The catalyst was filtered on Celite® and washed with
MeOH. The solution was evaporated under reduced pres-
sure affording 10b (46.4 mg, 96%) after crystallization by
addition of CH2Cl2: mp 123–126°C; [h]2D5=−63.5 (c 0.62,
MeOH); IR: 3430, 3407, 3318, 3005, 1697 (sh), 1669,
1505 cm−1; MS (ESI): 294 [(MNa)+, 100%)], 272 (MH)+,
248, 216; 1H NMR (300 MHz, CDCl3): 7.21 (m, 1H,
NHCOCH3), 6.64 (m, 1H, NH), 5.98 (m, 1H, NHCO2),
4.38 (m, 1H, H-4), 4.05 (m, 1H, H-5), 3.63, 3.23 (2 br dd,
2H, H2-6), 2.83, 2.31 (2 br dd, 2H, H2-3), 2.01 (s, 3H,
COCH3), 1.44 (s, 9H, t-Bu); 13C NMR (75.0 MHz,
CDCl3): 171.50 (CO), 170.33 (CO), 156.46 (NCO2), 80.38
(qC, t-Bu), 48.12, 47.13, 43.68 (C-4, C-5, C-6), 28.32
(CH3, t-Bu), 23.11 (COCH3).
9. Langlois, N.; Calvez, O.; Radom, M. O. Tetrahedron
Lett. 1997, 38, 8037–8040.
10. Preparation of 2 and 4: To a solution of unsaturated
lactam 1 (504 mg, 2.5 mmol) in THF (2.5 mL) was added
NH4OH (32% solution, 5.0 mL) and the mixture was
stirred at rt until complete conversion. After dilution with
CH2Cl2, the organic phase was washed twice with water,
dried over MgSO4 and evaporated to dryness. The
residue could be purified by chromatography on silica gel
(eluent: CH2Cl2–MeOH 93:7) to afford the compound 2
(62%), or directly acylated with Ac2O (0.46 mL) in pyri-
dine (5.7 mL) at rt for 18 h. Then, the mixture was cooled
to 0°C, and methanol (4 mL) was added. After being
stirred for 0.5 h, the solvents were evaporated under
reduced pressure and the product was purified by chro-
matography on silica gel (eluent: CH2Cl2–MeOH 96:4)
giving rise to 4 (398 mg, 61% for two steps): [h]2D5=+92 (c