Communication
ChemComm
6 A. Karmakar, A. V. Desai and S. K. Ghosh, Coord. Chem. Rev., 2016,
307, 313–341.
7 T. Du¨ren, Y.-S. Bae and R. Q. Snurr, Chem. Soc. Rev., 2009, 38, 1237–1247.
8 A. Mavrandonakis, E. Klontzas, E. Tylianakis and G. E. Froudakis,
J. Am. Chem. Soc., 2009, 131, 13410–13414.
9 M. Higuchi, K. Nakamura, S. Horike, Y. Hijikata, N. Yanai,
T. Fukushima, J. Kim, K. Kato, M. Takata, D. Watanabe, S. Oshima
and S. Kitagawa, Angew. Chem., Int. Ed., 2012, 51, 8369–8372.
10 M. Pan, B.-B. Du, Y.-X. Zhu, M.-Q. Yue, Z.-W. Wei and C.-Y. Su,
Chem. – Eur. J., 2016, 22, 2440–2451.
11 D. Aulakh, A. P. Nicoletta, J. B. Pyser, J. R. Varghese and M. Wriedt,
Dalton Trans., 2017, 46, 6853–6869.
273 K and 1 bar (the pressure limit of the available instrument).
It is noted that, although the amount of CO2 adsorbed decreases
with increasing temperature, the adsorption/desorption isotherms
display increasing hysteresis that reaches a maximum of 52% at
313 K (Fig. 2A, inset).31 The selectivity between CO2 and N2 is then
calculated based on the ideal adsorbed solution theory (IAST)32,33
by using the pyIAST code developed by Simon et al.,34 assuming
a flue gas like mixture containing 15% CO2 and 85% N2.35–37
Detailed isotherm fitting parameters and ideal selectivity at various
pressures and temperatures are given in the ESI,† and summar-
ized in Fig. 2B. The ideal CO2/N2 selectivities are above 10 for all
temperatures and pressures considered, and are relatively constant
throughout the pressure range of 0–1 bar at 273 K, 298 K, 303 K
and 323 K. Intriguingly, the ideal selectivity at 313 K displays an
increase with increasing pressure and reaches ca. 99 at 1 bar,
suggesting potentially effective CO2 capture at flue gas conditions.
In addition, the isosteric heat of CO2 adsorption (QST) on UNM-1 is
estimated to be between 27 Æ 2 kJ molÀ1 at 0.15 mmol gÀ1 CO2
adsorption and 21 Æ 4 kJ molÀ1 at 0.5 mmol gÀ1 CO2 adsorption
using Clausius–Clayperon equation, and ca. 16 kJ molÀ1 at
0 mmol gÀ1 CO2 adsorption by Virial fitting, respectively (ESI†).38,39
It is thus interesting to see that the large selectivity observed at
313 K coincides with the largest adsorption/desorption hysteresis
at the same temperature, even though the QST values for CO2 are
relatively small. We are currently studying this phenomenon
in more detail by using in-situ IR spectroscopy to uncover the
gas/solid interactions at the molecular level.
12 J. Zhang, M. Zhao, W. Xie, J. Jin, F. Xie, X. Song, S. Zhang, J. Wu and
Y. Tian, New J. Chem., 2017, 41, 9152–9158.
13 T. A. Grigolo, S. D. de Campos, F. Manarin, G. V. Botteselle,
˜
P. Brandao, A. A. Amaral and E. A. de Campos, Dalton Trans.,
2017, 46, 15698–15703.
14 L. Qin, Z.-Y. Sun, K. Cheng, S.-W. Liu, J.-X. Pang, L.-M. Xia,
W.-H. Chen, Z. Cheng and J.-X. Chen, ACS Appl. Mater. Interfaces,
2017, 9, 41378–41386.
15 C. Zhang, Y. Liu, L. Sun, H. Shi, C. Shi, Z. Liang and J. Li, Chem. –
Eur. J., 2018, 24, 2718–2724.
16 S. Wang, Q. Yang, J. Zhang, X. Zhang, C. Zhao, L. Jiang and C.-Y. Su,
Inorg. Chem., 2013, 52, 4198–4204.
17 M. B. Lalonde, R. B. Getman, J. Y. Lee, J. M. Roberts, A. A. Sarjeant,
K. A. Scheidt, P. A. Georgiev, J. P. Embs, J. Eckert, O. K. Farha,
R. Q. Snurr and J. T. Hupp, CrystEngComm, 2013, 15, 9408–9414.
´
18 J. A. Johnson, B. M. Petersen, A. Kormos and E. Echeverrıa, J. Am.
Chem. Soc., 2016, 138, 10293–10298.
19 B. H. Hamilton, K. A. Kelly, T. A. Wagler, M. P. Espe and C. J. Ziegler,
Inorg. Chem., 2002, 41, 4984–4986.
20 B. H. Hamilton, K. A. Kelly, T. A. Wagler, M. P. Espe and C. J. Ziegler,
Inorg. Chem., 2004, 43, 50–56.
21 B. H. Hamilton, T. A. Wagler, M. P. Espe and C. J. Ziegler, Inorg.
Chem., 2005, 44, 4891–4893.
22 B. H. Hamilton, T. B. Cardon, G. A. Lorigan and C. J. Ziegler, Dalton
Trans., 2005, 2941–2944.
23 B. H. Hamilton and C. J. Ziegler, Inorg. Chem., 2004, 43, 4272–4277.
24 B. H. Hamilton, K. A. Kelly, W. Malasi and C. J. Ziegler, Inorg. Chem.,
2003, 42, 3067–3073.
25 D. Tu¨rp, M. Wagner, V. Enkelmann and K. Mu¨llen, Angew. Chem.,
Int. Ed., 2011, 50, 4962–4965.
26 S. Fischer, J. Schmidt, P. Strauch and A. Thomas, Angew. Chem., Int.
Ed., 2013, 52, 12174–12178.
In summary, we have designed and synthesized a new
charge separated MOF free of counter-ions, possessing high
environmental stability and relatively large surface area, while
showing promising characteristics for CO2 separation. We are
currently investigating the adsorption behaviors of UNM-1 with
other industrially important gases including H2 and CH4, and
modifying the lengths and chemistry of the four arms of borate
center, which can lead to a variety of charge-separated MOFs
with tailor-designed structures and properties.
27 A. Burgun, R. S. Crees, M. L. Cole, C. J. Doonan and C. J. Sumby,
Chem. Commun., 2014, 50, 11760–11763.
28 Y.-J. Xiao, C.-Y. Sun, G.-C. Yang, L. Zhao and Z.-M. Su, Inorg. Chem.
Commun., 2014, 46, 248–250.
29 D. Aaron and C. Tsouris, Sep. Sci. Technol., 2005, 40, 321–348.
30 M. Radosz, X. Hu, K. Krutkramelis and Y. Shen, Ind. Eng. Chem. Res.,
2008, 47, 3783–3794.
31 The hysteresis at a given temperature is calculated as the ratio of the
difference of the amount of adsorbed CO2 between adsorption and
desorption at 0.5 bar over the difference of the amount of adsorbed
CO2 between 0 and 1 bar at that temperature.
32 A. L. Myers and J. M. Prausnitz, AlChE J., 1965, 11, 121–127.
33 E. Richter, W. Schutz and A. L. Myers, Chem. Eng. Sci., 1989, 44,
1609–1616.
Y. Q. would like to acknowledge National Science Foundation
(DMR-1453083) and United States Department of Agriculture
(NIFA 2015-38422-24059) for financial support for this research.
Conflicts of interest
There are no conflicts to declare.
34 C. M. Simon, B. Smit and M. Haranczyk, Comput. Phys. Commun.,
2016, 200, 364–380.
35 J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna and J. R. Long,
Energy Environ. Sci., 2011, 4, 3030–3040.
Notes and references
1 S. Kaskel, The Chemistry of Metal-Organic Frameworks. Synthesis,
Characterization, and Applications, Wiley-VCH Verlag GmbH & Co., 36 W. Lu, W. M. Verdegaal, J. Yu, P. B. Balbuena, H.-K. Jeong and
Weinheim, Germany, 2016.
H.-C. Zhou, Energy Environ. Sci., 2013, 6, 3559–3564.
37 X. Zhang, W. Chen, W. Shi and P. Cheng, J. Mater. Chem. A, 2016, 4,
16198–16204.
38 X. Lv, L. Li, S. Tang, C. Wang and X. Zhao, Chem. Commun., 2014, 50,
6886–6889.
2 S. M. Cohen, Chem. Rev., 2012, 112, 970–1000.
3 H. Furukawa, K. E. Cordova, M. O’Keeffe and O. M. Yaghi, Science,
2013, 341, 1230444.
4 T. R. Cook and P. J. Stang, Chem. Rev., 2015, 115, 7001–7045.
5 J. A. Johnson, X. Zhang, X. Zhang and J. Zhang, Curr. Org. Chem., 39 R.-J. Li, M. Li, X.-P. Zhou, D. Li and M. A. O’Keeffe, Chem. Commun.,
2014, 18, 1973–2001.
2014, 50, 4047–4049.
This journal is ©The Royal Society of Chemistry 2018
Chem. Commun., 2018, 54, 12654--12657 | 12657