1810
S. Kobayashi et al. / Tetrahedron Letters 44 (2003) 1807–1810
5. Sato, K. Nihon Kagaku Zasshi. 1955, 76, 1404–1406.
6. (a) Mikami, K.; Feng, F.; Matsueda, H.; Yoshida, A.;
Grierson, D. S. Synlett 1996, 833–836; (b) Mikami, K.;
Matsueda, H.; Nakai, T. Synlett 1993, 23–25; (c) Nico-
laou, K. C.; Skokotas, G.; Maligers, P.; Zuccarello, G.;
Schweiger, E. J.; Toshima, K.; Wendeborn, S. Angew.
Chem., Int. Ed. Engl. 1989, 28, 1272–1275.
7. Double cyclization between diiodobenzene and bis-
propargyl-sulfide gave complex mixtures.
8. Spectral data for 3: H NMR (300 MHz, CDCl3), l 3.70
Scheme 2. Pathway of thermal reaction of heteroarenecycly-
nes (2 and 3).
1
(s, 8H), 7.17 (AB2X, 2H), 7.32 (AB2X, 4H), 7.61 (AB2X,
2H); 13C NMR (75.4 MHz, CDCl3), l 21.1, 83.1, 85.7,
123.3, 128.2, 130.9, 135.8; IR (KBr, cm−1) 2933, 2910,
2223, 1592, 1567, 1477, 1104, 1247, 1220, 900, 892, 798,
682, 673, 493, 460; HRMS (FAB, positive ion mode)
calcd 368.0693 for C24H17S2, found 369.0754.
1
Spectral data for 4: H NMR (300 MHz, CDCl3), l 3.65
(s, 8H), 6.95 (s, 8H); 13C NMR (75.4 MHz, CDCl3), l
23.2, 83.4, 87.5, 122.6, 130.9; IR (KBr, cm−1) 2939, 2904,
2206, 1913, 1508, 1402, 1274, 1245, 1220, 1203, 894, 836,
719, 707, 673, 541, 493; HRMS (EI, positive ion mode)
calcd 368.0693 for C24H17S2, found 368.0674.
(
Crystal data for 3: C24H16S2, M=368.51, triclinic, P1,
,
a=8.605(1), b=10.9919(11), c=11.307(2) A, i=
88.17(1)°, V=923.8(3) A , Z=2, Dcalcd=1.325 g/cm3,
3
,
R=0.041, Rw=0.103, Rigaku Mercury, 10476 measured
reflections, Mo-Ka, 4139 unique (Rint=0.029), 251 vari-
ables [I>−10.00|(I)]. Crystal data for 4: C24H16S2, M=
Figure 3. Absorption spectra of C60 (3.25×10−5 mol dm−3) in
the presence of thiaarenecyclyne 3 in CHCl3. Concentration
of 3: 0.00, 3.25, 7.50, 14.0 (×10−5 mol dm−3) from bottom.
368.51, monoclinic, P21/c, a=8.635(2), b=12.727(3),
3
,
,
c=8.809(1) A, i=108.878(4)°, V=916.0(4) A , Z=2,
D
calcd=1.336 g/cm3, R=0.040, Rw=0.096, Quantum
Acknowledgements
CCD area detector coupled with a Rigaku AFC8 Diffrac-
tometer, 7343 measured reflections, Mo-Ka, 2014 unique
(Rint=0.053), 142 variables [I>2|(I)].
This work was supported by a Grant-in Aid for Scien-
tific Research (No. 13305062 and 14540507) from the
Ministry of Education, Science, Sports, and Culture of
Japan. We thank co-workers, Toshimasa Fujimura,
Maiko Yoshida and Yoshimitsu Terawaki.
9. Youngs, W. J.; Tessier, C. A.; Bradshow, J. D. Chem.
Rev. 1999, 99, 3153–3180.
10. Nishinaga, T.; Kawamura, T.; Komatsu, K. J. Chem.
Soc., Chem. Commun. 1998, 2263–2264.
11. Tsuchiya, T.; Shimizu, T.; Hirabayashi, K.; Kamigata, N.
J. Org. Chem. 2002, 67, 6632–6637.
References
12. Crystal data for 3–Ag complex: [Ag2(C24H16S2)2]-
(CF3SO3)2(C6H6) (for linear polymer). [Ag2(C24H16S2)2]-
1. Yamaguchi, Y.; Kobayashi, S.; Wakamiya, T.; Matsub-
ara, Y.; Yoshida, Z. J. Am. Chem. Soc. 2000, 122,
7404–7405.
2. Yamaguchi, Y.; Kobayashi, S.; Amita, N.; Wakamiya,
T.; Matsubara, Y.; Sugimoto, K.; Yoshida, Z. Tretrahe-
dron Lett. 2002, 43, 3277–3280.
3. Sonogashira, K. In Comprehensive Organic Synthesis;
Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991;
Vol. 3, pp. 521–549.
4. Wu, Z.; Moore, J. S. Tetrahedron Lett. 1994, 35, 5539–
5542.
(
(CF3SO3)2 (for cyclic dimer), M=2579.93, triclinic, P1,
,
a=12.2131(13), b=15.051(1), c=15.830(2) A, i=
67.519(5)°, V=2502.2(4) A , Z=1, Dcalcd=1.712 g/cm3,
3
,
R=0.029, Rw=0.092, Rigaku Mercury, 19893 measured
reflections, Mo-Ka, 10931 unique (Rint=0.018), 10931
variables [I>−0.00|(I)].
13. From Yoshida’s concept,2 which regards C60 as a transi-
tion metal-like superatom, this interaction is considered
to be coordination of the sulfur atom to C60. This is
understandable from 3 (or 4)–Ag+ complex formation.