386 Bull. Chem. Soc. Jpn., 76, No. 2 (2003)
Kinetic Resolution of Racemic Phosphines
(m, 3H), 4.27 (s, 5H), 4.55 (s, 1H), 5.51 (s, 1H), 7.25–7.81 (m,
10H); 31P NMR (160 MHz, CDCl3) δ 30.9. HRMS m/z Found:
416.0627. Calcd for C23H21FeO2P M+: 416.0629. Found: C,
65.94; H, 5.25%. Calcd for C23H21FeO2P: C, 66.37; H, 5.09%.
Chem., 61, 1172 (1996).
S. Siegel and H.-G. Schmalz, Angew. Chem., Int. Ed. Engl.,
36, 2456 (1997).
5
6
a) M. Mikołajczyk and J. Łuczak, J. Org. Chem., 43, 2132
Methyl(1-naphthyl)phenylphosphine (7a).20
Enantiomeric
(1978). b) J. Drabowicz, J. Łuczak, P. Łyzwa, and M.
Mikołajczyk, Phosphorus, Sulfur, Silicon, Relat. Elem., 143, 136
(1998).
excess of 7a was determined by Daicel Chiralcel OD, 30 °C, 1.0
mL/min, hexane/2-propanol = 90/10, t1 = 6.41 min, t2 = 6.98
min, after the transformation of 7a into the corresponding phos-
phine-borane.20c
7
The example of the enantioselective oxidation of racemic
phosphines with chiral oxoruthenium porphyrins has been report-
ed by Simonneaux et al.; P. L. Maux, H. Bahri, G. Simonneaux,
and L. Toupet, Inorg. Chem., 34, 4691 (1995).
Methyl(1-naphthyl)phenylphosphine Oxide (8a).20 Enanti-
omeric excess was determined by Daicel Chiralcel OJ, 30 °C, 1.0
mL/min, hexane/2-propanol = 90/10, t1 = 33.50 min, t2 = 37.90
min.
8
This work was partly presented at ꢂꢃth International Con-
ference on Phosphorus Chemistry July 29–August 3, 2001 Sendai,
Japan, Abstracts p. 210. Rayner et al. independently reported the
preparation of the selenoxide 1a and its use in the oxidation of sul-
fides; D. J. Procter and C. M. Rayner, Synth. Commun., 30, 2975
(2000).
Methyl(2-naphthyl)phenylphosphine (7b).20 Enantiomeric
excess of 7b was determined by Daicel Chiralcel OD, 30 °C, 1.0
mL/min, hexane/2-propanol = 90/10, t1 = 15.98 min, t2 = 19.80
min, after the transformation of 7b into the corresponding phos-
phine-borane.20c
9
a) F. A. Davis, O. D. Stringer, and R. T. Reddy, Tetra-
Methyl(2-naphthyl)phenylphosphine Oxide (8b).20 Enanti-
omeric excess was determined by Daicel Chiralcel AD, 30 °C, 0.5
mL/min, hexane/2-propanol = 90/10, t1 = 28.78 min, t2 = 32.97
min.
(2-Hydroxy-2,2-diphenylethyl)methyl(phenyl)phosphine
(7c).21 Enantiomeric excess of 7c was determined by Daicel
Chiralcel OD, 30 °C, 0.5 mL/min, hexane/2-propanol = 92/8, t1 =
26.42 min, t2 = 33.54 min, after the transformation of 7c into the
corresponding phosphine-borane.20c
(2-Hydroxy-2,2-diphenylethyl)methyl(phenyl)phosphine
Oxide (8c).21 Enantiomeric excess was determined by Daicel
Chiralcel OD, 30 °C, 0.5 mL/min, hexane/2-propanol = 85/15, t1
= 28.40 min, t2 = 36.18 min.
hedron, 41, 4747 (1985). b) K. B. Sharpless, M. W. Young, and R.
F. Lauer, Tetrahedron Lett., 1973, 1979. c) M. Oki and H.
Iwamura, Tetrahedron Lett., 1966, 2917. d) W. J. Burlant and E. S.
Gould, J. Am. Chem. Soc., 76, 5775 (1954). e) T. W. Campbell, H.
G. Walker, and G. M. Coppinger, Chem. Rev., 50, 279 (1952). f)
W. R. Gaythwaite, J. Kenyon, and H. Phillips, J. Chem. Soc.,
1928, 2280.
10 (R)-3,3ꢀ-Diphenyl-1,1ꢀ-bi-2-naphthol can be prepared from
(R)-BINOL; J. M. Chong, L. Shen, and N. J. Taylor, J. Am. Chem.
Soc., 122, 1822 (2000).
11 a) I. G. Stará, P. Stary, M. Tichy, J. Závada, and P. Fiedler,
J. Org. Chem., 59, 1326 (1994). b) T. Ooi, M. Kameda, and K.
Maruoka, J. Am. Chem. Soc., 121, 6519 (1999).
12 The efficiency of the kinetic resolution is characterized by
kf/ks, the selectivity factor = (rate of fast-reacting enantiomer)/
(rate of slow-reacting enantiomer). For a review, R. Noyori, M.
Tokunaga, and M. Kitamura, Bull. Chem. Soc. Jpn., 68, 36 (1995).
13 When LRMS spectra of the white precipitate were mea-
sured, the fragment peak of 1a (m/z = 512) was obtained.
14 a) The preparation of the salts of selenoxides with sulfonic
acid has been reported and the salts worked as oxidants of sulfides
to sulfoxides; D. J. Procter, M. Thornton-Pett, and C. M. Rayner,
Tetrahedron, 52, 1841 (1996). b) F. Toda and K. Mori, J. Chem.
Soc., Chem. Commun., 1986, 1357.
This work was supported by a Grant-in-Aid for Scientific
Research (Nos. 13305062 and 12750747) from the Ministry of
Education, Science, Sports, and Culture. We also thank Dr.
Izuru Takei at The University of Tokyo for his generous gift of
(S)-4a.
References
1
For a review see: A. Togni and T. Hayashi, “Ferrocenes,”
VCH: Weinheim, (1995) and Refs. cited therein.
For a review see; M. Sawamura and Y. Ito, Chem. Rev., 92,
857 (1992).
15 a) T. Imamoto, J. Watanabe, Y. Wada, H. Masuda, H.
Yamada, H. Tsuruta, S. Matsukawa, and K. Yamaguchi, J. Am.
Chem. Soc., 120, 1635 (1998). b) Y. Yamanori and T. Imamoto, J.
Org. Chem., 64, 2988 (1999).
2
3
For representative examples of diastereoselective lithiation
16 a) I. Takei, Ph.D. Thesis, The University of Tokyo (2002).
(S)-4a was prepared from (S)-2-iodoferrocenylcarboxylic acid by
the modified Bolm’s procedure; C. Bolm, K. M. Fernandez, A.
Seger, G. Raabe, and K. Gunther, J. Org. Chem., 63, 7860 (1998).
b) S.-L. You, X.-L. Hou, L.-X. Dai, Y.-H. Yu, and W. Xia, J. Org.
Chem., 67, 4684 (2002).
17 Y. Nishibayashi, K. Segawa, Y. Arikawa, K. Ohe, M. Hidai,
and S. Uemura, J. Organomet. Chem., 545-546, 381 (1997).
18 T. Hayashi, T. Mise, M. Fukushima, M. Kagotani, N.
Nagashima, Y. Hamada, A. Matsumoto, S. Kawakami, M.
Konishi, K. Yamamoto, and M. Kumada, Bull. Chem. Soc. Jpn.,
53, 1138 (1980).
of chiral ferrocenes; a) D. Marquarding, H. Klusacek, G. Gokel, P.
Hoffmann, and I. Ugi, J. Am. Chem. Soc., 92, 5389 (1970). b) O.
Riant, O. Samuel, and H. B. Kagan, J. Am. Chem. Soc., 115, 5835
(1993). c) F. Reibière, O. Riant, L. Ricard, and H. B. Kagan,
Angew. Chem., Int. Ed. Engl., 32, 568 (1993). d) C. J. Richards, T.
Damalidis, D. E. Hibbs, and M. B. Hursthouse, Synlett, 1995, 74.
e) T. Sammakia, H. A. Latham, and D. R. Schaad, J. Org. Chem.,
60, 10 (1995). f) Y. Nishibayashi and S. Uemura, Synlett, 1995,
79. g) W. Zhang, T. Hirao, and I. Ikeda, Tetrahedron Lett., 37,
4545 (1996). h) K. H. Ahn, C.-W. Cho, H.-H. Baek, J. Park, and S.
Lee, J. Org. Chem., 61, 4937 (1996).
4
a) D. Price and N. S. Simpkins, Tetrahedron Lett., 36, 6135
19 O. Riant, O. Samuel, T. Flessner, S. Taudien, and H. B.
Kagan, J. Org. Chem., 62, 6733 (1997).
20 a) N. G. Andersen, P. D. Ramsden, D. Che, M. Parvez, and
(1995). b) M. Tsukazaki, M. Tinkl, A. Roglans, B. J. Chapell, N.
J. Taylor, and V. Snieckus, J. Am. Chem. Soc., 118, 685 (1996). c)
Y. Nishibayashi, Y. Arikawa, K. Ohe, and S. Uemura, J. Org.