S. M. Huber et al.
Curr. Opin. Solid State Mater. Sci. 2009, 13, 36; d) A. C. Legon,
[16] Single-crystal X-ray structure analysis of compound 2a: red-brown
prism, [(C12H10I4N4)2+],
2ACTHNGUTERNNUG
[(CF3O3S)À], Mr =1016.00; monoclinic,
[4] For selected reviews, see: a) P. Metrangolo, G. Resnati, Chem. Eur.
10, 1712; d) R. Bertani, P. Sgarbossa, A. Venzo, F. Lelj, M. Amati,
[5] a) A. Mele, P. Metrangolo, H. Neukirch, T. Pilati, G. Resnati, J. Am.
M. S. Taylor, Angew. Chem. 2010, 122, 1718; Angew. Chem. Int. Ed.
space group C2/c (no. 15), a=24.4159(3), b=9.0554(1), c=
14.7108(2) ꢀ, b=122.0621(5)8, V=2756.40(6) ꢀ3, Z=4, l
(MoKa)=
0.71073 ꢀ, m=4.750 mmÀ1 1calcd =2.448 gcmÀ3
T=173(1) K, F-
(000)=1872, crystal dimensions 0.20ꢄ0.25ꢄ0.36 mm; R1=0.0158
(2508, Io >2s(Io)), wR2=0.0384 (all 2546 data), GOF=1.119, 165
parameters, D1max/min =0.79/À0.51 eꢀÀ3. For detailed information see
the Supporting Information and CCDC-849763 contains the supple-
mentary crystallographic data for this paper. These data can be ob-
tained free of charge from The Cambridge Crystallographic Data
ACHTUNGTRENNUNG
,
,
AHCTUNGTRENNUNG
´
2010, 49, 1674; c) E. Dimitrijevic, P. Kvak, M. S. Taylor, Chem.
Commun. 2010, 46, 9025; d) A. Caballero, N. G. White, P. D. Beer,
[6] A. Bruckmann, M. A. Pena, C. Bolm, Synlett 2008, 900.
[7] For congruence with the hydrogen-bond nomenclature, the electro-
philic partner of the interaction is denoted as a halogen-bond donor,
contrary to its actual role as electron acceptor.
[8] See, for example: a) N. Kuhn, T. Kratz, G. Henkel, J. Chem. Soc.
Thompson, N. G. White, K. E. Christensen, P. D. Beer, J. Am. Chem.
[18] If “polar flattening” is considered (S. C. Nyburg, C. H. Faerman,
[19] The addition of 10 or 20 mol% of pyridine represents a compromise
between the need to suppress side reactions and the slow consump-
tion of benzhydryl bromide by pyridine, reducing the achievable
yield of 4.
[20] Single crystal X-ray structure analysis of a complex of the dication
of 2c with Br42À: red plate, [(C12 H12 I2 N4)2+], 2[(Br)À], (Br2), Mr =
785.66; orthorhombic, space group Cmca (no. 64), a=6.9454(2), b=
11.8626(4), c=24.2662(8) ꢀ, V=1999.30(11) ꢀ3, Z=4, l
ACHTUNGTRENNUNG
0.71073 ꢀ, m=11.141 mmÀ1
, ,
1calcd =2.610 gcmÀ3
AHCTUNGTRENNUNG
(994, Io >2s(Io)), wR2=0.0424 (all 1003 data), GOF=1.147, 67 pa-
rameters, D1max/min =0.58/À0.51 eꢀÀ3. For detailed information see
the Supporting Information and CCDC-849765 contains the supple-
mentary crystallographic data for this paper. These data can be ob-
tained free of charge from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif..
[10] S. M. Walter, F. Kniep, E. Herdtweck, S. M. Huber, Angew. Chem.
[11] See, for example: a) M. Freytag, P. G. Jones, B. Ahrens, A. K. Fisch-
760; d) G. Mꢆnguez Espallargas, L. Brammer, P. Sherwood, Angew.
Chem. 2006, 118, 449; Angew. Chem. Int. Ed. 2006, 45, 435; e) F. F.
f) G. Mꢆnguez Espallargas, F. Zordan, L. A. Marin, H. Adams, K.
Shankland, J. van de Streek, L. Brammer, Chem. Eur. J. 2009, 15,
7554; g) K. Raatikainen, M. Cametti, K. Rissanen, Beilstein J. Org.
Chem. 2010, 6, 4, and references therein.
2À
[21] a) For (rare) examples of the Br4 anion, see: M. C. Aragoni, M.
Arca, F. A. Devillanova, M. B. Hursthouse, S. L. Huth, F. Isaia, V.
79, and references therein; b) for the related I4 anion, see: A.
Abate, M. Brischetto, G. Cavallo, M. Lahtinen, P. Metrangolo, T.
Pilati, S. Radice, G. Resnati, K. Rissanen, G. Terraneo, Chem.
2À
À
[22] Sum of the van der Waals radii for Br Br: 3.70 ꢀ, see Ref. [17].
[23] For previous precedence of HBr oxidation by azo compounds with
strongly electron-withdrawing substituents, see, for example: a) M.
Kobayashi, J. Chem. Soc. Jpn. 1953, 74, 968; for the reduction of
azobis(pyridinium) compounds, see, for example: b) J. E. Rockley,
Brown, J. Cao, J.-Y. Lee, S. P. Newton, F. M. Raymo, J. F. Stoddart,
[24] As expected, the addition of only 0.2 equivalents of pyridine only
seemed to suppress a similar fraction of the overall reaction.
[25] We found no indication of bromination of product 4 in the reaction
mixture.
[12] Only four Cl-, Br-, or I-substituted 4,4’-azobisACTHNUTRGNE(NUG pyridine) derivatives
are known [see: a) Z. Talik, Rocz. Chem. 1962, 36, 1313; b) R.-A.
which features halogen substituents at the 2/2’ or 6/6’ positions.
[13] See, for example: a) S. Singh, G. Das, O. V. Singh, H. Han, Tetrahe-
M. Santos, M. A. Sanz-Tejedor, M. C. CarreÇo, G. Gonzꢇlez, J. L.
Garcꢆa-Ruano, Synthesis 2001, 14, 2175 (for 1b); c) Y. M. Choi-Sle-
deski, R. Kearney, G. Poli, H. Pauls, C. Gardner, Y. Gong, M.
Becker, R. Davis, A. Spada, G. Liang, V. Chu, K. Brown, D. Collus-
si, R. Leadley, Jr., S. Rebello, P. Moxey, S. Morgan, R. Bentley, C.
[26] Orientating DFT calculations show the feasibility of bidentate coor-
dination of 2a to a single bromide anion (see the Supporting Infor-
mation).
University of Erlangen–Nuremberg (Germany), 1995.
[15] When the neutral (nonmethylated) precursor of 2a was irradiated at
360 nm in benzene for 3 h, a second isomer, supposedly the cis form,
was formed according to TLC. However, within a few minutes it
had completely reverted to the trans isomer and thus could not be
isolated. In contrast, when compound 2a was irradiated at 360 nm in
CH3CN for several hours, no second isomer was detected.
[28] However, an SN1-type activation of benzhydryl bromide (and its de-
rivatives) with thiourea-based catalysts has been proposed in the re-
action of said compounds with enamines (i.e., stronger nucleophiles
than acetonitrile): A. R. Brown, W.-H. Kuo, E. N. Jacobsen, J. Am.
Received: September 30, 2011
Revised: November 25, 2011
Published online: January 4, 2012
1310
ꢃ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2012, 18, 1306 – 1310