(Scheme 1).2,4 Under the influence of catalytic amounts of
[Rh(cod)(CH3CN)2]BF4 (1), arylboronic acids react with C60
to investigate the use of Pd(II) complexes as potential second-
generation catalysts for the functionalization of C60. Herein
we report a highly active yet bench-stable Pd(II) catalyst (2)
for the hydroarylation of C60 with boronic acids (Scheme
1).
Scheme 1. Hydroarylation of Fullerene with Boronic Acids
In early experiments, we found that a cationic Pd(II)
complex such as [Pd(dppe)(PhCN)2]SbF6 (Miyaura catalyst)9
can catalyze the reaction between C60 and PhB(OH)2 (3a)
in H2O/1,2-Cl2C6H4, furnishing the corresponding hydro-
phenylation product 4a (Table 1, entries 1 and 2). As in the
Catalyzed by Rh Complex 1 and Pd Complex 2
Table 1. Discovery of Palladium Catalysis for the
Hydroarylation of C60 with Boronic Acidsa
additive
(amount)
yield
(%)b
entry
Pd catalyst
PdCl2(dppe)d
1c
2e
3
4
5
AgSbF6 (20%)
16
40
3
17
40
in the presence of water to give a formal hydroarylation product
(Ar-C60-H).2 This reaction enables the introduction of various
aryl groups and a hydrogen atom on the fullerene surface. This
catalytic reaction has been developed on the basis of the ability
of Rh(I) complexes to catalyze the hydroarylation of electron-
deficient alkenes and alkynes with arylboronic acids,5 and of
the general behavior of C60 as an electron acceptor.1,6
[Pd(dppe)(PhCN)2](SbF6)2
Pd(OAc)2
Pd(OAc)2/bpyf
Pd(OAc)2/bpyf
CF3CO2H (20%)
a Reaction conditions: C60 (60 µmol), 3a (90 µmol), Pd catalyst (10
mol %), 1,2-Cl2C6H4 (7.2 mL), H2O (0.6 mL), 60 °C, 6 h. b Determined
by HPLC analysis with C70 as an internal standard. c Reaction was
conducted for 12 h. d dppe: 1,2-bis(diphenylphosphino)ethane. e Reaction
was conducted at 23 °C. f bpy: 2,2′-bipyridyl. 20 mol % of bpy was
employed.
Inspired by the parallel progress of Pd(II) catalysis in
organoboron-based hydroarylation chemistry,7-13 we decided
(6) The addition of organometallic reagent to C60: (a) Wudl, F.; Hirsch,
A.; Khemani, K. C.; Suzuki, T.; Allemand, P. M.; Kosch, A.; Eckert, H.;
Srdanov, G.; Webb, H. M. ACS Symposium Series 481; American Chemical
Society: Washington, DC, 1992; p 161. (b) Hirsch, A.; Soi, A.; Karfunkel,
H. R. Angew. Chem., Int. Ed. Engl. 1992, 31, 766. (c) Fagan, P. J.; Krusic,
P. J.; Evans, D. H.; Lerke, S. A.; Johnston, E. J. Am. Chem. Soc. 1992,
114, 9697. (d) Hirsch, A.; Gro¨sser, T.; Skiebe, A.; Soi, A. Chem. Ber. 1993,
126, 1061. (e) Nagashima, H.; Terasaki, H.; Kimura, E.; Nakajima, K.;
Itoh, K. J. Org. Chem. 1994, 59, 1246. (f) Komatsu, K.; Murata, Y.;
Takimoto, N.; Mori, S.; Sugita, N.; Wan, T. S. M. J. Org. Chem. 1994, 59,
6101. (g) Sawamura, M.; Iikura, H.; Nakamura, E. J. Am. Chem. Soc. 1996,
118, 12850. (h) Matsuo, Y.; Tahara, K.; Morita, K.; Matsuo, K.; Nakamura,
E. Angew. Chem., Int. Ed. 2007, 46, 2844.
rhodium-catalyzed reaction,2 the addition takes place across
the CdC bond between the two six-membered rings on C60
(1,2-bond). Although Pd(OAc)2 alone is nearly inactive (entry
3), the addition of 2,2′-bipyridyl (bpy)10 as a ligand (Lu
catalyst) affords 4a in 17% yield (entry 4). Catalytic activity
is further increased with CF3CO2H (20 mol %) as additive,
producing 4a in 40% yield (entry 5).
On the basis of these encouraging results, further
optimization of catalyst was conducted. Following the
Pd(OAc)2/bpy/CF3CO2H catalyst lead (Table 1, entry 5),
(7) First demonstration of Pd catalysis: Cho, C. S.; Motofusa, S.; Ohe,
K.; Uemura, S.; Shim, S. C. J. Org. Chem. 1995, 60, 883.
(8) Pd0/CHCl3 systems: (a) Yamamoto, T.; Ohta, T.; Ito, Y. Org. Lett.
2005, 7, 4153. (b) Yamamoto, T.; Iizuka, M.; Ohta, T.; Ito, Y. Chem. Lett.
2006, 35, 198.
(11) PdII/phosphite systems: Horiguchi, H.; Tsurugi, H.; Satoh, T.; Miura,
(9) Cationic PdII systems: (a) Nishikata, T.; Yamamoto, Y.; Miyaura,
N. Angew. Chem., Int. Ed. 2003, 42, 2768. (b) Nishikata, T.; Yamamoto,
Y.; Miyaura, N. Organometallics 2004, 23, 4317. (c) Nishikata, T.;
Yamamoto, Y.; Miyaura, N. Chem. Lett. 2005, 34, 720. (d) Gini, F.; Hessen,
B.; Minnaard, A. J. Org. Lett. 2005, 7, 5309. (e) Nishikata, T.; Yamamoto,
Y.; Gridnev, I. D.; Miyaura, N. Organometallics 2005, 24, 5025. (f)
Nishikata, T.; Yamamoto, Y.; Miyaura, N. Tetrahedron Lett. 2007, 48, 4007.
(g) Nishikata, T.; Yamamoto, Y.; Miyaura, N. AdV. Synth. Catal. 2007,
349, 1759. (h) Nishikata, T.; Kobayashi, Y.; Kobayshi, K.; Yamamoto, Y.;
Miyaura, N. Synlett 2007, 3055. (i) Nishikata, T.; Yamamoto, Y.; Miyaura,
N. Chem. Lett. 2007, 36, 1442. (j) Yamamoto, Y.; Nishikata, T.; Miyaura,
N. Pure Appl. Chem. 2008, 80, 807.
M. J. Org. Chem. 2008, 73, 1590
(12) PdII/carbene systems: Zhang, T.; Shi, M. Chem. Eur. J. 2008, 14,
3759.
.
(13) Palladacycle systems: (a) He, P.; Lu, Y.; Dong, C.-G.; Hu, Q.-S.
Org. Lett. 2007, 9, 343. (b) Suzuma, Y.; Yamamoto, T.; Ohta, T.; Ito, Y.
Chem. Lett. 2007, 36, 470. (c) He, P.; Lu, Y.; Hu, Q.-S. Tetrahedron Lett.
2007, 48, 5283. (d) Bedford, R. B.; Betham, M.; Charmant, J. P. H.;
Haddow, M. F.; Orpen, A. G.; Pilarski, L. T.; Coles, S. J.; Hursthouse,
M. B. Organometallics 2007, 26, 6346.
(14) In view of cost, simplicity, and stability, the catalyst modification
of [Pd(dppe)(PhCN)2]SbF6 was not conducted.
(15) Throughout this paper, “selectivity” stands for a ratio of the quantity
of desired product (4) over the quantity of substrate (C60) converted (Orchin,
M.; Macomber, R. S.; Pinhas, A. R.; Wilson, R. M. The Vocabulary and
Concepts of Organic Chemistry, ed.; Wiley-Interscience: Hoboken, NJ,
2005). The most common side products for reactions where the selectivity
is low are multiple hydroarylation products.
(10) PdII/bpy systems: (a) Lu, X.; Lin, S. J. Org. Chem. 2005, 70, 9651.
(b) Lin, S.; Lu, X. Tetrahedron Lett. 2006, 47, 7167. (c) Zhao, B.; Lu, X.
Org. Lett. 2006, 8, 5987. (d) Zhao, B.; Lu, X. Tetrahedron Lett. 2006, 47,
6765. (e) Lin, S.; Lu, X. J. Org. Chem. 2007, 72, 9757. (f) Dai, H.; Yang,
M.; Lu, X. AdV. Synth. Catal. 2008, 350, 249
.
4610
Org. Lett., Vol. 10, No. 20, 2008